Suppr超能文献

利用描述符学习和基于功能映射的形状匹配实现小鼠下颌骨自动解剖地标定位。

Leveraging descriptor learning and functional map-based shape matching for automated anatomical Landmarking in mouse mandibles.

作者信息

Thomas Oshane O, Maga A Murat

机构信息

Center for Development Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA.

Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA.

出版信息

J Anat. 2025 May;246(5):829-845. doi: 10.1111/joa.14196. Epub 2025 Jan 15.

Abstract

Geometric morphometrics is used in the biological sciences to quantify morphological traits. However, the need for manual landmark placement hampers scalability, which is both time-consuming, labor-intensive, and open to human error. The selected landmarks embody a specific hypothesis regarding the critical geometry relevant to the biological question. Any adjustment to this hypothesis necessitates acquiring a new set of landmarks or revising them significantly, which can be impractical for large datasets. There is a pressing need for more efficient and flexible methods for landmark placement that can adapt to different hypotheses without requiring extensive human effort. This study investigates the precision and accuracy of landmarks derived from functional correspondences obtained through the functional map framework of geometry processing. We utilize a deep functional map network to learn shape descriptors, which enable us to achieve functional map-based and point-to-point correspondences between specimens in our dataset. Our methodology involves automating the landmarking process by interrogating these maps to identify corresponding landmarks, using manually placed landmarks from the entire dataset as a reference. We apply our method to a dataset of rodent mandibles and compare its performance to MALPACA's, a standard tool for automatic landmark placement. Our model demonstrates a speed improvement compared to MALPACA while maintaining a competitive level of accuracy. Although MALPACA typically shows the lowest RMSE, our models perform comparably well, particularly with smaller training datasets, indicating strong generalizability. Visual assessments confirm the precision of our automated landmark placements, with deviations consistently falling within an acceptable range for MALPACA estimates. Our results underscore the potential of unsupervised learning models in anatomical landmark placement, presenting a practical and efficient alternative to traditional methods. Our approach saves significant time and effort and provides the flexibility to adapt to different hypotheses about critical geometrical features without the need for manual re-acquisition of landmarks. This advancement can significantly enhance the scalability and applicability of geometric morphometrics, making it more feasible for large datasets and diverse biological studies.

摘要

几何形态测量学在生物科学中用于量化形态特征。然而,手动放置地标点的需求阻碍了其可扩展性,这既耗时、劳动强度大,又容易出现人为误差。所选地标点体现了关于与生物学问题相关的关键几何形状的特定假设。对该假设的任何调整都需要获取一组新的地标点或对其进行大幅修改,这对于大型数据集来说可能不切实际。迫切需要更高效、灵活的地标点放置方法,能够适应不同假设,而无需大量人力。本研究调查了通过几何处理的功能映射框架获得的功能对应关系所衍生的地标点的精度和准确性。我们利用深度功能映射网络来学习形状描述符,这使我们能够在数据集中的标本之间实现基于功能映射和点对点的对应关系。我们的方法包括通过询问这些映射来识别相应地标点,从而实现地标点标注过程的自动化,以整个数据集中手动放置的地标点作为参考。我们将我们的方法应用于啮齿动物下颌骨数据集,并将其性能与自动地标点放置的标准工具MALPACA进行比较。我们的模型与MALPACA相比显示出速度提升,同时保持了具有竞争力的准确性水平。尽管MALPACA通常显示出最低的均方根误差,但我们的模型表现同样出色,特别是对于较小的训练数据集,表明具有很强的通用性。视觉评估证实了我们自动地标点放置的精度,偏差始终落在MALPACA估计的可接受范围内。我们的结果强调了无监督学习模型在解剖地标点放置中的潜力,为传统方法提供了一种实用且高效的替代方案。我们的方法节省了大量时间和精力,并提供了灵活性,能够适应关于关键几何特征的不同假设,而无需手动重新获取地标点。这一进展可以显著提高几何形态测量学的可扩展性和适用性,使其在大型数据集和多样的生物学研究中更可行。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验