Strauss Shira A, Ma Gar-Way, Seo Chanhee, Siracuse Jeffrey J, Madassery Sreekumar, Truesdell Alexander G, Pereira Keith, Korngold Ethan C, Kayssi Ahmed
Department of Family and Community Medicine, University Health Network, University of Toronto, Toronto, Canada.
Division of Vascular Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
Cochrane Database Syst Rev. 2025 Mar 28;3(3):CD014594. doi: 10.1002/14651858.CD014594.pub2.
The use of percutaneous arterial access for endovascular procedures has broad applications, from diagnostic angiography in the coronary and peripheral arteries, to thromboembolectomy in people with ischemic stroke and percutaneous coronary intervention in those with acute myocardial infarction. The rise of these procedures worldwide underscores the importance of obtaining precise and timely arterial access while minimizing the risk of adverse events. Traditionally, anatomic landmarks, such as the anterior superior iliac spine and symphysis pubis, have guided percutaneous common femoral artery (CFA) access, along with manual palpation of the pulse and fluoroscopy to confirm bony landmarks. Anatomic landmarks can be deceptive, however, especially in certain subpopulations, such as those with a high femoral artery bifurcation, elevated body mass index (BMI), or non-palpable femoral pulses. Ultrasound has emerged as a promising tool to guide percutaneous CFA access, offering enhanced visualization and providing real-time guidance. Notwithstanding this theoretical advantage, trials have inconsistently demonstrated an advantage to ultrasound guidance over anatomic landmarks, and concerns surrounding added set-up time and training have limited its uptake both clinically and across society guidelines.
To assess the efficacy and safety of ultrasound compared to anatomic landmarks to guide percutaneous access of the CFA for the purpose of endovascular arterial imaging or treatment.
The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to 25 January 2024.
We selected randomized controlled trials comparing ultrasound guidance to anatomic landmark guidance (using manual palpation or fluoroscopy, or both) for percutaneous CFA access in people undergoing endovascular therapy for diagnostic or therapeutic purposes.
We used standard Cochrane methods. Primary outcomes included first-pass success, time to successful CFA access, and major bleeding (including hematoma requiring transfusion, hematoma extending length of stay, hematoma ≥ 5 cm, unexplained hemoglobin drop, or major/severe bleeding as defined by each trial). Secondary outcomes included overall cannulation success, venipuncture, pain scores, number of access attempts, major complications (including retroperitoneal hematoma, pseudoaneurysms, dissections, arteriovenous fistulae, or occlusions), adverse events (including minor bleeding, infection, and neuropathy) up to 30 days, quality of life, re-intervention rate up to 30 days, and total number of access sites attempted. We conducted sensitivity analyses to determine whether the effect of ultrasound guidance on time to successful CFA access differed across studies that defined this endpoint differently, and to assess the impact of studies that permitted rescue ultrasound on study endpoints.
Of 1422 records identified through our search of the databases, nine randomized controlled trials enrolling 4447 participants fulfilled our inclusion criteria. All trials were at high risk of bias in at least one domain, with seven trials at overall high risk of bias and the remaining two at overall unclear risk of bias. There may be increased first-pass success (odds ratio [OR] 3.35, 95% confidence interval [CI] 2.53 to 4.44; P < 0.001, I² = 69%; 7 trials, 4274 participants; low certainty evidence) and reduced time to successful CFA access (mean difference [MD] -17.24 s, 95% CI -27.04 to -7.43 s; P < 0.001, I² = 45%; 6 trials, 3570 participants; low certainty evidence) with ultrasound guidance compared to anatomic landmark guidance. Ultrasound guidance may also reduce unintentional venipuncture (OR 0.26, 95% CI 0.18 to 0.38; P < 0.001, I² = 33%; 7 trials, 4178 participants; low certainty evidence) and number of access attempts (MD -0.59, 95% CI -0.91 to -0.26; P < 0.001, I² = 96%; 5 trials, 3362 participants; very low certainty evidence), although the evidence for the latter outcome is very uncertain. Ultrasound guidance may have little to no effect on major bleeding (OR 0.60, 95% CI 0.32 to 1.13; P = 0.11, I² = 38%; 6 trials, 4016 participants; low certainty evidence), overall cannulation success (though the evidence is very uncertain) (OR 1.46, 95% CI 0.93 to 2.30; P = 0.10, I² = 59%; 4 trials, 2520 participants; very low certainty evidence), and likely has little to no effect on pain scores (MD 0.00, 95% CI -0.34 to 0.34; P = 1.00, I² not applicable; 1 trial, 939 participants; moderate certainty evidence). Ultrasound guidance may also have little to no effect on retroperitoneal hematoma, pseudoaneurysm formation, arterial dissection, arteriovenous fistulae, target vessel occlusion, minor bleeding, or infection compared to anatomic landmark guidance (P > 0.05 for all). Lack of data precluded an assessment of re-intervention rates, neuropathy, quality of life, or number of access sites. Sensitivity analysis revealed that ultrasound guidance may reduce time to successful CFA access in studies that defined this outcome as time from administration of local anesthetic to successful sheath insertion (MD -23.65 s, 95% CI -34.28 to -13.01 s; 3 trials, 1517 participants), but not in studies that defined it as time from the first movement of the fluoroscopy table/application of the ultrasound probe to successful sheath insertion (MD -14.85 s, 95% CI -33.45 to 3.75 s; 2 trials, 1941 participants) or time from skin penetration by the access needle to sheath insertion (MD 11.00 s, 95% CI -43.06 to 65.06 s; 1 trial, 112 participants). Sensitivity analysis excluding studies that permitted rescue ultrasound resulted in no change in the overall effect of ultrasound versus anatomic landmark guidance on any of the observed outcomes.
AUTHORS' CONCLUSIONS: Ultrasound guidance may confer clinical benefit over anatomic landmark guidance for percutaneous CFA access regarding first-pass success, time to successful CFA access, and unintentional venipuncture, without increasing the risk of adverse events. Evidence for other outcomes including major bleeding, overall cannulation success, number of access attempts, retroperitoneal hematoma, minor bleeding, pseudoaneurysms, arterial dissection, arteriovenous fistulae, arterial occlusion, infection, or pain scores demonstrates no benefit to ultrasound guidance over anatomic landmark guidance. Data on higher-risk subgroups, including people with elevated BMI, extensive atherosclerosis or calcification, and high femoral artery bifurcation, are lacking. Generalizability was also limited by the high risk of bias across most studies and the exclusion of important subgroups (e.g. people with non-palpable pulses).
经皮动脉穿刺用于血管内介入手术有着广泛的应用,从冠状动脉和外周动脉的诊断性血管造影,到缺血性中风患者的血栓切除术以及急性心肌梗死患者的经皮冠状动脉介入治疗。这些手术在全球范围内的兴起凸显了在将不良事件风险降至最低的同时,精确、及时地建立动脉通路的重要性。传统上,诸如髂前上棘和耻骨联合等解剖标志引导经皮股总动脉(CFA)穿刺,同时通过手动触诊脉搏和荧光透视来确认骨性标志。然而,解剖标志可能具有误导性,尤其是在某些亚群体中,例如股动脉分叉位置较高、体重指数(BMI)升高或股动脉搏动无法触及的人群。超声已成为引导经皮CFA穿刺的一种有前景的工具,它能提供增强的可视化并进行实时引导。尽管有这一理论优势,但试验结果并不一致地表明超声引导相对于解剖标志具有优势,而且对增加的准备时间和培训的担忧限制了其在临床和社会指南中的应用。
评估与解剖标志相比,超声引导经皮穿刺CFA以进行血管内动脉成像或治疗的有效性和安全性。
Cochrane血管信息专家检索了Cochrane血管专业注册库、CENTRAL、MEDLINE、Embase、CINAHL数据库以及世界卫生组织国际临床试验注册平台和ClinicalTrials.gov试验注册库,检索截至2024年1月25日。
我们选择了随机对照试验,这些试验比较了超声引导与解剖标志引导(使用手动触诊或荧光透视,或两者皆用)在接受诊断或治疗性血管内治疗的人群中经皮CFA穿刺的情况。
我们采用标准的Cochrane方法。主要结局包括首次穿刺成功、成功建立CFA通路的时间以及大出血(包括需要输血的血肿、延长住院时间的血肿、≥5 cm的血肿、无法解释的血红蛋白下降或各试验定义的严重大出血)。次要结局包括总体插管成功、静脉穿刺、疼痛评分一次穿刺成功、成功建立CFA通路的时间以及大出血(包括需要输血的血肿、延长住院时间的血肿、≥5 cm的血肿、无法解释的血红蛋白下降或各试验定义的严重大出血)。次要结局包括总体插管成功、静脉穿刺、疼痛评分、穿刺尝试次数、主要并发症(包括腹膜后血肿、假性动脉瘤、夹层、动静脉瘘或闭塞)、30天内的不良事件(包括轻微出血、感染和神经病变)、生活质量、30天内的再次干预率以及尝试的穿刺部位总数。我们进行了敏感性分析,以确定超声引导对成功建立CFA通路时间的影响在不同定义该终点的研究中是否存在差异,并评估允许使用救援超声的研究对研究终点的影响。
通过检索数据库识别出的1422条记录中,9项纳入4447名参与者的随机对照试验符合我们的纳入标准。所有试验在至少一个领域存在高偏倚风险,7项试验总体存在高偏倚风险,其余2项总体偏倚风险不明确。与解剖标志引导相比,超声引导可能提高首次穿刺成功率(优势比[OR] 3.35,95%置信区间[CI] 2.53至4.44;P < 0.001,I² = 69%;7项试验,4274名参与者;低确定性证据)并缩短成功建立CFA通路的时间(平均差[MD] -17.24秒,95% CI -27.04至 -7.43秒;P < 0.001,I² = 45%;6项试验,3570名参与者;低确定性证据)。超声引导还可能减少意外静脉穿刺(OR 0.26,95% CI 0.18至0.38;P < 0.001,I² = 33%;7项试验,4178名参与者;低确定性证据)和穿刺尝试次数(MD -0.59,95% CI -0.91至 -0.26;P < 0.001,I² = 96%;5项试验,3362名参与者;极低确定性证据),尽管后一结局的证据非常不确定。超声引导对大出血(OR 0.60,95% CI 0.32至1.13;P = 0.11,I² = 38%;6项试验,4016名参与者;低确定性证据)、总体插管成功(尽管证据非常不确定)(OR 1.46,95% CI 0.93至2.30;P = 0.10,I² = 59%;4项试验,2520名参与者;极低确定性证据)可能几乎没有影响,对疼痛评分可能也几乎没有影响(MD 0.00,95% CI -0.34至z0.34;P = 1.00,I²不适用;1项试验,939名参与者;中等确定性证据)。与解剖标志引导相比,超声引导对腹膜后血肿、假性动脉瘤形成、动脉夹层、动静脉瘘、靶血管闭塞、轻微出血或感染可能也几乎没有影响(所有P > 0.05)。由于缺乏数据,无法评估再次干预率、神经病变、生活质量或穿刺部位数量。敏感性分析表明,在将该结局定义为从局部麻醉给药到成功插入鞘管的时间的研究中,超声引导可能缩短成功建立CFA通路的时间(MD -23.65秒,95% CI -34.28至 -13.01秒;3项试验,1517名参与者),但在将其定义为从荧光透视台首次移动/应用超声探头到成功插入鞘管的时间的研究中则不然(MD -14.85秒,95% CI -33.45至3.75秒;2项试验,1941名参与者),在将其定义为从穿刺针穿透皮肤到插入鞘管的时间的研究中也不然(MD 11.00秒,95% CI -43.06至65.06秒;1项试验,112名参与者)。排除允许使用救援超声的研究的敏感性分析结果显示,超声与解剖标志引导相比,对任何观察到的结局的总体影响均无变化。
在经皮CFA穿刺方面,超声引导相对于解剖标志引导可能在首次穿刺成功率、成功建立CFA通路的时间和意外静脉穿刺方面带来临床益处,且不会增加不良事件风险。关于大出血、总体插管成功、穿刺尝试次数、腹膜后血肿、轻微出血、假性动脉瘤、动脉夹层、动静脉瘘、动脉闭塞、感染或疼痛评分等其他结局的证据表明,超声引导相对于解剖标志引导并无优势。缺乏关于高风险亚群体的数据,包括BMI升高、广泛动脉粥样硬化或钙化以及股动脉分叉位置较高的人群。大多数研究的高偏倚风险以及对重要亚群体(如搏动无法触及的人群)的排除也限制了研究结果的可推广性。