Suppr超能文献

魔波长光镊中分子的长寿命纠缠

Long-lived entanglement of molecules in magic-wavelength optical tweezers.

作者信息

Ruttley Daniel K, Hepworth Tom R, Guttridge Alexander, Cornish Simon L

机构信息

Department of Physics, Durham University, Durham, United Kingdom.

Joint Quantum Centre Durham-Newcastle, Durham University, Durham, United Kingdom.

出版信息

Nature. 2025 Jan;637(8047):827-832. doi: 10.1038/s41586-024-08365-1. Epub 2025 Jan 15.

Abstract

Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions. However, the same properties make molecules highly sensitive to their environment, affecting their coherence and utility in some applications. Here we show that by engineering an exceptionally controlled environment using rotationally magic optical tweezers, we can achieve long-lived entanglement between pairs of molecules using detectable hertz-scale interactions. We prepare two-molecule Bell states with fidelity , limited by detectable leakage errors. When correcting for these errors, the fidelity is . We show that the second-scale entanglement lifetimes are limited solely by these errors, providing opportunities for research in quantum-enhanced metrology, ultracold chemistry and the use of rotational states in quantum simulation, quantum computation and as quantum memories. The extension of precise quantum control to complex molecular systems will enable their additional degrees of freedom to be exploited across many domains of quantum science.

摘要

实现粒子的量子控制和纠缠对于推动量子技术和基础科学发展至关重要。在这一领域,各种系统都取得了重大进展。在此背景下,超冷极性分子因其与振动和转动相关的更复杂内部结构以及长程相互作用的存在而提供了新的独特机遇。然而,同样的特性使分子对其环境高度敏感,在某些应用中影响其相干性和实用性。在这里,我们表明,通过使用旋转魔术光镊设计一个异常可控的环境,我们可以利用可检测的赫兹级相互作用在分子对之间实现长寿命纠缠。我们制备了保真度为 的双分子贝尔态,受可检测的泄漏误差限制。校正这些误差后,保真度为 。我们表明,秒级纠缠寿命仅受这些误差限制,为量子增强计量学、超冷化学以及在量子模拟、量子计算和作为量子存储器中使用转动状态的研究提供了机会。将精确量子控制扩展到复杂分子系统将使它们的额外自由度能够在量子科学的许多领域得到利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6247/11754098/9dc523b11c86/41586_2024_8365_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验