Jin Chenghao, Lin Yue, Wang Yanan, Shi Jingbo, Li Ren, Liu Yijiang, Yue Zongye, Leng Kunyue, Zhao Yafei, Wang Yi, Han Xiao, Qu Yunteng, Bai Jinbo
International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China.
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Adv Mater. 2025 Feb;37(8):e2412658. doi: 10.1002/adma.202412658. Epub 2025 Jan 15.
Electrochemical reduction of CO to value-added multicarbon (C) productions offers an attractive route for renewable energy storage and CO utilization, but it remains challenging to achieve high C selectivity at industrial-level current density. Herein, a MoCu single-atom alloy (SAA) catalyst is reported that displays a remarkable C Faradaic efficiency of 86.4% under 0.80 A cm. Furthermore, the C partial current density over MoCu reaches 1.33 A cm with a Faradaic efficiency surpasses 74.3%. The combination of operando spectroscopy and density functional theory (DFT) indicates the as-prepared MoCu SAA catalyst enables atom-scale cascade catalysis via multi-active site collaboration. The introduced Mo sites promote the HO dissociation to fabricate active H, meanwhile, the Cu sites (Cu) far from Mo atom are active sites for the CO activation toward CO. Further, CO and H are captured by the adjacent Cu sites (Cu) near Mo atom, accelerating CO conversion and C─C coupling process. Our findings benefit the design of tandem electrocatalysts at atomic scale for transforming CO to multicarbon products under a high conversion rate.
将CO电化学还原为增值多碳(C)产物为可再生能源存储和CO利用提供了一条有吸引力的途径,但在工业级电流密度下实现高C选择性仍然具有挑战性。在此,报道了一种MoCu单原子合金(SAA)催化剂,其在0.80 A cm下显示出86.4%的显著C法拉第效率。此外,MoCu上的C分电流密度达到1.33 A cm,法拉第效率超过74.3%。原位光谱和密度泛函理论(DFT)的结合表明,所制备的MoCu SAA催化剂通过多活性位点协作实现原子级串联催化。引入的Mo位点促进HO解离以生成活性H,同时,远离Mo原子的Cu位点(Cu)是CO活化生成CO的活性位点。此外,CO和H被Mo原子附近相邻的Cu位点(Cu)捕获,加速了CO转化和C─C偶联过程。我们的研究结果有助于在原子尺度上设计串联电催化剂,以在高转化率下将CO转化为多碳产物。