Suppr超能文献

构建来自法国西南部奥克西塔尼亚地区野生蜜蜂的可靠16S小条形码文库。

Building a reliable 16S mini-barcode library of wild bees from Occitania, south-west of France.

作者信息

Marquisseau Anaïs, Canale-Tabet Kamila, Labarthe Emmanuelle, Pascal Géraldine, Klopp Christophe, Pornon André, Escaravage Nathalie, Rudelle Rémi, Vignal Alain, Ouin Annie, Ollivier Mélodie, Pichon Magalie

机构信息

Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.

GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan France.

出版信息

Biodivers Data J. 2025 Jan 7;13:e137540. doi: 10.3897/BDJ.12.e137540. eCollection 2025.

Abstract

BACKGROUND

DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for. The COI (Cytochrome Oxydase subunit 1) gene, the most used in barcoding/metabarcoding of arthropods, suffers from primer bias and difficulties for covering all wild bee species using the classical Folmer primers.

NEW INFORMATION

We present here a curated database for a 250 bp mini-barcode region of the 16S rRNA gene, suitable for low-cost metabarcoding wild bees in applications, such as eDNA analysis or for sequencing ancient or degraded DNA. Sequenced specimens were captured in Occitania (south-west of France) and morphologically identified by entomologists, with a total of 530 individuals belonging to 171 species and 19 genera. A customised workflow including distance-tree inferences and a second round of entomologist observations, when necessary, was used for the validation of 348 mini-barcodes covering 148 species. Amongst them, 93 species did not have any 16S reference barcode available before our contribution. This high-quality reference library data are freely available to the scientific community, with the aim of facilitating future large-scale characterisation of wild bee communities in a context of pollinators' decline.

摘要

背景

DNA条形码和宏条形码技术现已成为研究生物多样性的有力工具,尤其适用于准确鉴定属于不同分类群的大量样本集。它们的成功很大程度上取决于用作条形码的DNA序列的分类分辨率以及参考数据库的可靠性。对于野生蜜蜂而言,条形码序列的覆盖量一直在持续增长,但仍需关注一些错误的物种注释。细胞色素氧化酶亚基1(COI)基因是节肢动物条形码/宏条形码中使用最多的基因,存在引物偏差问题,并且使用经典的福尔默引物难以覆盖所有野生蜜蜂物种。

新信息

我们在此展示了一个针对16S rRNA基因250bp迷你条形码区域的精选数据库,适用于低成本宏条形码分析野生蜜蜂,可用于环境DNA分析或对古代或降解DNA进行测序等应用。测序样本采自法国西南部的奥克西塔尼地区,并由昆虫学家进行形态学鉴定,共有530个个体,分属于171个物种和19个属。采用了定制的工作流程,包括距离树推断以及必要时第二轮昆虫学家观察,用于验证覆盖148个物种的348个迷你条形码。其中,93个物种在我们的贡献之前没有任何16S参考条形码。这些高质量的参考文库数据已免费提供给科学界,旨在促进在传粉者数量下降的背景下对野生蜜蜂群落进行未来的大规模特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c875/11733625/38dbce68355f/bdj-13-e137540-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验