Omori Ryosuke, Chemaitelly Hiam, Abu-Raddad Laith J
Division of Bioinformatics, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.
Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar.
Infect Dis Model. 2024 Dec 12;10(2):423-428. doi: 10.1016/j.idm.2024.12.008. eCollection 2025 Jun.
We aimed to understand to what extent knowledge of the prevalence of one sexually transmitted infection (STI) can predict the prevalence of another STI, with application for men who have sex with men (MSM). An individual-based simulation model was used to study the concurrent transmission of HIV, HSV-2, chlamydia, gonorrhea, and syphilis in MSM sexual networks. Using the model outputs, 15 multiple linear regression models were conducted for each STI prevalence, treating the prevalence of each as the dependent variable and the prevalences of up to four other STIs as independent variables in various combinations. For HIV, HSV-2, chlamydia, gonorrhea, and syphilis, the proportion of variation in prevalence explained by the 15 models ranged from 34.2% to 88.3%, 19.5%-70.5%, 43.7%-82.9%, 48.7%-86.3%, and 19.5%-67.2%, respectively. Including multiple STI prevalences as independent variables enhanced the models' predictive power. Gonorrhea prevalence was a strong predictor of HIV prevalence, while HSV-2 and syphilis prevalences were weak predictors of each other. Propagation of STIs in sexual networks reveals intricate dynamics, displaying varied epidemiological profiles while also demonstrating how the shared mode of transmission creates ecological associations that facilitate predictive relationships between STI prevalences.
我们旨在了解一种性传播感染(STI)的流行率知识在多大程度上能够预测另一种STI的流行率,并将其应用于男男性行为者(MSM)。我们使用了一个基于个体的模拟模型来研究MSM性网络中HIV、HSV-2、衣原体、淋病和梅毒的同时传播情况。利用模型输出结果,针对每种STI流行率构建了15个多元线性回归模型,将每种STI的流行率作为因变量,并将多达其他四种STI的流行率以各种组合作为自变量。对于HIV、HSV-2、衣原体、淋病和梅毒,这15个模型所解释的流行率变化比例分别为34.2%至88.3%、19.5%至70.5%、43.7%至82.9%、48.7%至86.3%以及19.5%至67.2%。将多种STI流行率作为自变量提高了模型的预测能力。淋病流行率是HIV流行率的一个强有力的预测指标,但HSV-2和梅毒流行率相互之间的预测能力较弱
。性传播感染在性网络中的传播揭示了复杂的动态过程,呈现出不同的流行病学特征,同时也展示了共同的传播方式如何形成生态关联,从而促进性传播感染流行率之间的预测关系。