Suppr超能文献

基于全局特征交互和无锚框感知特征调制的无人机目标跟踪方法

UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation.

作者信息

Dan Yuanhong, Li Jinyan, Jin Yu, Ji Yong, Wang Zhihao, Cheng Dong

机构信息

Colleage of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China.

出版信息

PLoS One. 2025 Jan 16;20(1):e0314485. doi: 10.1371/journal.pone.0314485. eCollection 2025.

Abstract

Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets. In addition, we design an anchor-free frame-aware feature modulation mechanism to reduce computation and generate high-quality anchors while optimizing the target frame refinement computation to improve the adaptability to target deformation motion. Comparison experiments with several popular algorithms on UAV tracking datasets, such as UAV123@10fps, UAV20L, and DTB70, show that the algorithm balances speed and accuracy. In order to verify the reliability of the algorithm, we built a physical experimental environment on the Jetson Orin Nano platform. We realized a real-time processing speed of 30 frames per second.

摘要

无人机视角下的目标跟踪技术利用无人机摄像头捕获视频流,并实时识别和跟踪特定目标。基于暹罗家族的深度学习无人机目标跟踪方法取得了显著成果,但在准确性和速度兼容性方面仍面临挑战。在本研究中,为了优化特征表示并减少计算量以提高跟踪器的效率,我们在深度互相关操作中进行特征融合,并引入全局注意力机制以增强模型的视野范围和特征细化能力,从而提高对小目标的跟踪性能。此外,我们设计了一种无锚框感知特征调制机制,以减少计算量并生成高质量的锚框,同时优化目标框细化计算,以提高对目标变形运动的适应性。在无人机跟踪数据集(如UAV123@10fps、UAV20L和DTB70)上与几种流行算法进行的对比实验表明,该算法在速度和准确性之间取得了平衡。为了验证算法的可靠性,我们在Jetson Orin Nano平台上构建了物理实验环境。我们实现了每秒30帧的实时处理速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/089f/11737744/4ac2180dd04e/pone.0314485.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验