Tang Daoze, Tang Shuyun, Fan Zhipeng
Harbin University of Commerce, Harbin, China.
Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin, China.
PLoS One. 2024 Dec 19;19(12):e0315267. doi: 10.1371/journal.pone.0315267. eCollection 2024.
In the field of UAV aerial image processing, ensuring accurate detection of tiny targets is essential. Current UAV aerial image target detection algorithms face challenges such as low computational demands, high accuracy, and fast detection speeds. To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. Second, a lightweight cross-scale feature pyramid network (LC-FPN) is employed to further enrich feature information, integrate multi-level feature maps, and provide more comprehensive semantic information. Finally, to increase model training speed and achieve greater efficiency, we propose a lightweight, detail-enhanced, shared convolution detection head (LDSCD-Head) to optimize the original detection head. Moreover, we present different scale versions of the LCFF-Net algorithm to suit various deployment environments. Empirical assessments conducted on the VisDrone dataset validate the efficacy of the algorithm proposed. Compared to the baseline-s model, the LCFF-Net-n model outperforms baseline-s by achieving a 2.8% increase in the mAP50 metric and a 3.9% improvement in the mAP50-95 metric, while reducing parameters by 89.7%, FLOPs by 50.5%, and computation delay by 24.7%. Thus, LCFF-Net offers high accuracy and fast detection speeds for tiny target detection in UAV aerial images, providing an effective lightweight solution.
在无人机航拍图像处理领域,确保对微小目标进行准确检测至关重要。当前的无人机航拍图像目标检测算法面临着诸如低计算需求、高精度和快速检测速度等挑战。为了解决这些问题,我们提出了一种改进的轻量级算法:LCFF-Net。首先,我们提出了LFERELAN模块,旨在增强微小目标特征的提取并优化计算资源的使用。其次,采用轻量级跨尺度特征金字塔网络(LC-FPN)来进一步丰富特征信息,整合多级特征图,并提供更全面的语义信息。最后,为了提高模型训练速度并实现更高的效率,我们提出了一种轻量级、细节增强、共享卷积检测头(LDSCD-Head)来优化原始检测头。此外,我们还提出了不同尺度版本的LCFF-Net算法,以适应各种部署环境。在VisDrone数据集上进行的实证评估验证了所提出算法的有效性。与基线-s模型相比,LCFF-Net-n模型在mAP50指标上比基线-s提高了2.8%,在mAP50-95指标上提高了3.9%,同时参数减少了89.7%,FLOPs减少了50.5%,计算延迟减少了24.7%。因此,LCFF-Net为无人机航拍图像中的微小目标检测提供了高精度和快速检测速度,提供了一种有效的轻量级解决方案。