Suppr超能文献

基于视觉特征的可解释性白内障识别机器学习框架。

Explainable machine learning framework for cataracts recognition using visual features.

作者信息

Wu Xiao, Hu Lingxi, Xiao Zunjie, Zhang Xiaoqing, Higashita Risa, Liu Jiang

机构信息

Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

School of Computer Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom.

出版信息

Vis Comput Ind Biomed Art. 2025 Jan 17;8(1):3. doi: 10.1186/s42492-024-00183-6.

Abstract

Cataract is the leading ocular disease of blindness and visual impairment globally. Deep neural networks (DNNs) have achieved promising cataracts recognition performance based on anterior segment optical coherence tomography (AS-OCT) images; however, they have poor explanations, limiting their clinical applications. In contrast, visual features extracted from original AS-OCT images and their transform forms (e.g., AS-OCT-based histograms) have good explanations but have not been fully exploited. Motivated by these observations, an explainable machine learning framework to recognize cataracts severity levels automatically using AS-OCT images was proposed, consisting of three stages: visual feature extraction, feature importance explanation and selection, and recognition. First, the intensity histogram and intensity-based statistical methods are applied to extract visual features from original AS-OCT images and AS-OCT-based histograms. Subsequently, the SHapley Additive exPlanations and Pearson correlation coefficient methods are applied to analyze the feature importance and select significant visual features. Finally, an ensemble multi-class ridge regression method is applied to recognize the cataracts severity levels based on the selected visual features. Experiments on a clinical AS-OCT-NC dataset demonstrate that the proposed framework not only achieves competitive performance through comparisons with DNNs, but also has a good explanation ability, meeting the requirements of clinical diagnostic practice.

摘要

白内障是全球导致失明和视力损害的主要眼病。基于前段光学相干断层扫描(AS-OCT)图像,深度神经网络(DNN)在白内障识别方面取得了不错的性能;然而,它们的解释性较差,限制了其临床应用。相比之下,从原始AS-OCT图像及其变换形式(如基于AS-OCT的直方图)中提取的视觉特征具有良好的解释性,但尚未得到充分利用。受这些观察结果的启发,提出了一种可解释的机器学习框架,用于使用AS-OCT图像自动识别白内障严重程度,该框架包括三个阶段:视觉特征提取、特征重要性解释与选择以及识别。首先,应用强度直方图和基于强度的统计方法从原始AS-OCT图像和基于AS-OCT的直方图中提取视觉特征。随后,应用SHapley加法解释和皮尔逊相关系数方法分析特征重要性并选择重要的视觉特征。最后,应用集成多类岭回归方法基于所选视觉特征识别白内障严重程度。在临床AS-OCT-NC数据集上的实验表明,所提出的框架不仅通过与DNN比较取得了有竞争力的性能,而且具有良好的解释能力,满足临床诊断实践的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c380/11748710/92242ee4d6c3/42492_2024_183_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验