Suppr超能文献

基于眼前节光学相干断层扫描(OCT)图像的混合金字塔注意力网络用于核性白内障分类

Mixed pyramid attention network for nuclear cataract classification based on anterior segment OCT images.

作者信息

Zhang Xiaoqing, Xiao Zunjie, Li Xiaoling, Wu Xiao, Sun Hanxi, Yuan Jin, Higashita Risa, Liu Jiang

机构信息

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, 518055 China.

Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China.

出版信息

Health Inf Sci Syst. 2022 Mar 25;10(1):3. doi: 10.1007/s13755-022-00170-2. eCollection 2022 Dec.

Abstract

Nuclear cataract (NC) is a leading ocular disease globally for blindness and vision impairment. NC patients can improve their vision through cataract surgery or slow the opacity development with early intervention. Anterior segment optical coherence tomography (AS-OCT) image is an emerging ophthalmic image type, which can clearly observe the whole lens structure. Recently, clinicians have been increasingly studying the correlation between NC severity levels and clinical features from the nucleus region on AS-OCT images, and the results suggested the correlation is strong. However, automatic NC classification research based on AS-OCT images has rarely been studied. This paper presents a novel mixed pyramid attention network (MPANet) to classify NC severity levels on AS-OCT images automatically. In the MPANet, we design a novel mixed pyramid attention (MPA) block, which first applies the group convolution method to enhance the feature representation difference of feature maps and then construct a mixed pyramid pooling structure to extract local-global feature representations and different feature representation types simultaneously. We conduct extensive experiments on a clinical AS-OCT image dataset and a public OCT dataset to evaluate the effectiveness of our method. The results demonstrate that our method achieves competitive classification performance through comparisons to state-of-the-art methods and previous works. Moreover, this paper also uses the class activation mapping (CAM) technique to improve our method's interpretability of classification results.

摘要

核性白内障(NC)是全球导致失明和视力损害的主要眼病。NC患者可通过白内障手术改善视力,或通过早期干预减缓晶状体混浊的发展。眼前节光学相干断层扫描(AS-OCT)图像是一种新兴的眼科图像类型,它可以清晰地观察整个晶状体结构。近年来,临床医生越来越多地研究AS-OCT图像上核区NC严重程度与临床特征之间的相关性,结果表明这种相关性很强。然而,基于AS-OCT图像的NC自动分类研究却很少。本文提出了一种新颖的混合金字塔注意力网络(MPANet),用于自动对AS-OCT图像上的NC严重程度进行分类。在MPANet中,我们设计了一种新颖的混合金字塔注意力(MPA)模块,该模块首先应用分组卷积方法来增强特征图的特征表示差异,然后构建一个混合金字塔池化结构,以同时提取局部-全局特征表示和不同的特征表示类型。我们在一个临床AS-OCT图像数据集和一个公共OCT数据集上进行了广泛的实验,以评估我们方法的有效性。结果表明,通过与现有方法和先前工作进行比较,我们的方法实现了具有竞争力的分类性能。此外,本文还使用类激活映射(CAM)技术来提高我们方法对分类结果的可解释性。

相似文献

本文引用的文献

1
The Lancet Global Health Commission on Global Eye Health: vision beyond 2020.《柳叶刀》全球眼健康委员会:2020年之后的愿景。
Lancet Glob Health. 2021 Apr;9(4):e489-e551. doi: 10.1016/S2214-109X(20)30488-5. Epub 2021 Feb 16.
3
An Efficient Lens Structures Segmentation Method on AS-OCT Images.一种基于AS-OCT图像的高效晶状体结构分割方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1646-1649. doi: 10.1109/EMBC44109.2020.9175944.
6
Automatic cataract grading methods based on deep learning.基于深度学习的自动白内障分级方法。
Comput Methods Programs Biomed. 2019 Dec;182:104978. doi: 10.1016/j.cmpb.2019.07.006. Epub 2019 Aug 5.
8
Squeeze-and-Excitation Networks.挤压激励网络。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验