Shi Yang, Yun Yangfang, Wang Rong, Liu Zheng, Wu Zhenkun, Xiang Yu, Zhang Jingjing
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202425123. doi: 10.1002/anie.202425123. Epub 2025 Jan 27.
Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL). This strategy relies on the site-specific incorporation of sulfonyl fluoride groups onto aptamers to enable the cross-linking with target proteins, coupled with the conjugation of an LC3 ligand to hijack the autophagy-lysosomal pathway for targeted protein degradation. The chemically engineered CApTECs exhibit enhanced on-target retention and improved structural stability. Our results also demonstrate that CApTECs achieve remarkably enhanced and prolonged degradation of membrane proteins compared to the non-covalent designs. Furthermore, the CApTEC targeting TfR1 is combined with 5-fluorouracil (5-FU) for synergistic tumor therapy in a mouse model, leading to substantial suppression of tumor growth. Our strategy may provide deep insights into the LC3-mdiated autophagic degradation, affording a modular and effective strategy for membrane protein degradation and precise therapeutic applications.
靶向降解膜蛋白是消除致病相关蛋白的一种有吸引力的策略。基于适体的嵌合体作为膜蛋白降解剂具有很大的潜力,然而,它们的降解效率常常受到结构稳定性有限以及与靶蛋白非共价相互作用导致的脱靶效应风险的阻碍。我们在此报告了首个基于适体的共价自噬体 tethering 嵌合体(CApTEC)的设计,用于增强细胞表面蛋白(包括转铁蛋白受体 1(TfR1)和核仁素(NCL))的自噬降解。该策略依赖于将磺酰氟基团位点特异性地掺入适体以实现与靶蛋白的交联,同时结合 LC3 配体以劫持自噬 - 溶酶体途径进行靶向蛋白降解。化学工程改造的 CApTEC 表现出增强的靶向保留和改善的结构稳定性。我们的结果还表明,与非共价设计相比,CApTEC 实现了膜蛋白显著增强和延长的降解。此外,靶向 TfR1 的 CApTEC 与 5 - 氟尿嘧啶(5 - FU)联合用于小鼠模型中的协同肿瘤治疗,导致肿瘤生长受到显著抑制。我们的策略可能为 LC3 介导的自噬降解提供深入见解,为膜蛋白降解和精确治疗应用提供一种模块化且有效的策略。