Suppr超能文献

三种预测模型对腰椎间盘突出症患者深静脉血栓形成的疗效

Efficacy of three predictive models for deep vein thrombosis in patients with lumbar disc herniation.

作者信息

Yang Shuai, Guo Qingfeng, Xing Yaqing, Liu Erjun, Zhao Fugang, Zhang Weiling

机构信息

Department of Traditional Chinese Medicine, The First Hospital of Hebei Medical University Shijiazhuang 050091, Hebei, China.

出版信息

Am J Transl Res. 2024 Dec 15;16(12):7438-7447. doi: 10.62347/TWTG6803. eCollection 2024.

Abstract

OBJECTIVE

To develop predictive models for assessing deep vein thrombosis (DVT) risk among lumbar disc herniation (LDH) patients and evaluate their performances.

METHODS

A retrospective study was conducted on 798 LDH patients treated at the First Hospital of Hebei Medical University from January 2017 to December 2023. The patients were divided into a training set (n = 558) and a test set (n = 240) using computer-generated random numbers in a ratio of 7:3. Patients without DVT in the training set were categorized as the non-DVT group (n = 463), while those diagnosed with DVT were the DVT group (n = 95). Univariate analysis was performed to compare clinical data between the two groups. Data with statistical significance were used for the development of a Logistic regression model, Gradient boosting model, and Random Forest model. Model performance was evaluated through receiver operating characteristic (ROC) curve analysis and calibration curve assessment.

RESULTS

In the training set, univariate analysis revealed significant differences in age, platelets (PLT), cholesterol (TC), triglycerides (TG), glycated hemoglobin (HbAlc), D-dimer (D-D), fibrinogen (FIB), activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) between the non-DVT group and the DVT group (all <0.05). Predictive models were constructed based on these indicators. The areas under the ROC curves (AUCs) in the training set were as follows (in descending order): Random Forest model (0.978) > Gradient boosting model (0.943) > Logistic regression model (0.919). In the test set, the AUCs were: Random Forest model (0.952) > Gradient boosting model (0.941) > Logistic regression model (0.908). The DeLong test indicated that the AUC of the Random Forest model in the training set was significantly higher than that of the Logistic regression model (<0.05); however, no significant difference was observed between the other two models. Calibration curves demonstrated that the predictive probabilities from all three models closely aligned with actual DVT incidence in both sets.

CONCLUSION

The Logistic regression model, Gradient boosting model, and Random Forest model constructed in this study exhibit good predictive value for the occurrence of DVT in LDH patients, aiding in the optimization of clinical management of clinical management. Among them, the Random Forest model performed the best of the three.

摘要

目的

建立预测模型以评估腰椎间盘突出症(LDH)患者深静脉血栓形成(DVT)的风险,并评估其性能。

方法

对2017年1月至2023年12月在河北医科大学第一医院接受治疗的798例LDH患者进行回顾性研究。使用计算机生成的随机数按7:3的比例将患者分为训练集(n = 558)和测试集(n = 240)。训练集中无DVT的患者被归类为非DVT组(n = 463),而被诊断为DVT的患者为DVT组(n = 95)。进行单因素分析以比较两组之间的临床数据。具有统计学意义的数据用于建立Logistic回归模型、梯度提升模型和随机森林模型。通过受试者工作特征(ROC)曲线分析和校准曲线评估来评估模型性能。

结果

在训练集中,单因素分析显示非DVT组和DVT组在年龄、血小板(PLT)、胆固醇(TC)、甘油三酯(TG)、糖化血红蛋白(HbAlc)、D - 二聚体(D - D)、纤维蛋白原(FIB)、活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)和凝血酶时间(TT)方面存在显著差异(均<0.05)。基于这些指标构建了预测模型。训练集中ROC曲线下面积(AUC)如下(降序排列):随机森林模型(0.978)>梯度提升模型(0.943)>Logistic回归模型(0.919)。在测试集中,AUC分别为:随机森林模型(0.952)>梯度提升模型(0.941)>Logistic回归模型(0.908)。DeLong检验表明训练集中随机森林模型的AUC显著高于Logistic回归模型(<0.05);然而,其他两个模型之间未观察到显著差异。校准曲线表明,所有三个模型的预测概率与两组中实际DVT发生率密切相关。

结论

本研究构建的Logistic回归模型、梯度提升模型和随机森林模型对LDH患者DVT的发生具有良好的预测价值,有助于优化临床管理。其中,随机森林模型在三者中表现最佳。

相似文献

1
Efficacy of three predictive models for deep vein thrombosis in patients with lumbar disc herniation.
Am J Transl Res. 2024 Dec 15;16(12):7438-7447. doi: 10.62347/TWTG6803. eCollection 2024.
4
[Incidence and risk factor analysis of deep venous thrombosis in patients with severe traumatic brain injury].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019 Feb;31(2):182-186. doi: 10.3760/cma.j.issn.2095-4352.2019.02.012.
6
[Predictive value of D-dimer for deep venous thrombosis of lower extremity in adult burn patients].
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2022 Apr 20;38(4):335-340. doi: 10.3760/cma.j.cn501120-20201021-00444.
9
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.

本文引用的文献

2
In-depth structure-function profiling of the complex formation between clotting factor VIII and heme.
Thromb Res. 2024 May;237:184-195. doi: 10.1016/j.thromres.2024.04.006. Epub 2024 Apr 13.
3
A review on longitudinal data analysis with random forest.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad002.
4
Prevalence of Asymptomatic Deep Vein Thrombosis in Preoperative State of Spine Surgeries.
World Neurosurg. 2023 Feb;170:e737-e743. doi: 10.1016/j.wneu.2022.11.105. Epub 2022 Nov 25.
5
Association Between Blood Lipid Levels and Lower Extremity Deep Venous Thrombosis: A Population-Based Cohort Study.
Clin Appl Thromb Hemost. 2022 Jan-Dec;28:10760296221121282. doi: 10.1177/10760296221121282.
6
Characteristics and mechanisms of resorption in lumbar disc herniation.
Arthritis Res Ther. 2022 Aug 23;24(1):205. doi: 10.1186/s13075-022-02894-8.
7
Incidence and risk factors of preoperative deep venous thrombosis following hip fracture: a retrospective analysis of 293 consecutive patients.
Eur J Trauma Emerg Surg. 2022 Aug;48(4):3141-3147. doi: 10.1007/s00068-021-01861-3. Epub 2022 Jan 22.
9
Rudolf Virchow: 200th birth anniversary.
Virchows Arch. 2021 Dec;479(6):1063-1065. doi: 10.1007/s00428-021-03252-w. Epub 2021 Dec 15.
10
Gradient boosting for linear mixed models.
Int J Biostat. 2021 Jan 13;17(2):317-329. doi: 10.1515/ijb-2020-0136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验