Suppr超能文献

基于机器学习原子间势的氢化镁脱氢的长时间尺度分子动力学模拟

Long Time Scale Molecular Dynamics Simulation of Magnesium Hydride Dehydrogenation Enabled by Machine Learning Interatomic Potentials.

作者信息

Morrison Oliver, Uteva Elena, Walker Gavin S, Grant David M, Ling Sanliang

机构信息

Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Aria Sustainability Ltd., Unit 7, Wheatcroft Business Park, Landmere Lane, Edwalton, Nottingham NG12 4DG, United Kingdom.

出版信息

ACS Appl Energy Mater. 2024 Dec 19;8(1):492-502. doi: 10.1021/acsaem.4c02627. eCollection 2025 Jan 13.

Abstract

Magnesium hydride (MgH) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material's limiting factor is the high dehydrogenation temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard applications. Catalysts and physical restructuring (e.g., through ball milling) have both shown kinetic improvements, without full theoretical understanding as to why. In this work, we developed a machine learning interatomic potential (MLP) for the Mg-H system, which was used to run long time scale molecular dynamics (MD) simulations of a thick magnesium hydride surface slab for up to 1 ns. Our MLP-based MD simulations reveal previously unreported behavior of subsurface molecular H formation and subsequent trapping in the subsurface layer of MgH. This hindered diffusion of subsurface H offers a partial explanation on the slow dehydrogenation kinetics of MgH. The kinetics will be improved if a catalyst obstructs subsurface formation and trapping of H or if the diffusion of subsurface H is improved through defects created by physical restructuring.

摘要

氢化镁(MgH)因其高重量储氢容量以及镁的丰富性和低成本,是一种很有前景的固态储氢材料。该材料的限制因素是脱氢温度高(超过300°C),且在无催化剂时(脱)氢动力学缓慢,这使得它在车载应用中不实用。催化剂和物理重构(例如通过球磨)都显示出动力学上的改善,但对于其原因尚无完整的理论理解。在这项工作中,我们为Mg-H体系开发了一种机器学习原子间势(MLP),用于对厚的氢化镁表面平板进行长达1 ns的长时间尺度分子动力学(MD)模拟。我们基于MLP的MD模拟揭示了此前未报道的表面下分子氢形成以及随后被困在MgH表面下层的行为。这种表面下氢扩散受阻为MgH缓慢的脱氢动力学提供了部分解释。如果催化剂阻碍表面下氢的形成和捕获,或者通过物理重构产生的缺陷改善表面下氢的扩散,动力学将会得到改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9c/11733948/2c0c42532251/ae4c02627_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验