Suppr超能文献

委员会神经网络势控制泛化误差并支持主动学习。

Committee neural network potentials control generalization errors and enable active learning.

机构信息

Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic.

出版信息

J Chem Phys. 2020 Sep 14;153(10):104105. doi: 10.1063/5.0016004.

Abstract

It is well known in the field of machine learning that committee models improve accuracy, provide generalization error estimates, and enable active learning strategies. In this work, we adapt these concepts to interatomic potentials based on artificial neural networks. Instead of a single model, multiple models that share the same atomic environment descriptors yield an average that outperforms its individual members as well as a measure of the generalization error in the form of the committee disagreement. We not only use this disagreement to identify the most relevant configurations to build up the model's training set in an active learning procedure but also monitor and bias it during simulations to control the generalization error. This facilitates the adaptive development of committee neural network potentials and their training sets while keeping the number of ab initio calculations to a minimum. To illustrate the benefits of this methodology, we apply it to the development of a committee model for water in the condensed phase. Starting from a single reference ab initio simulation, we use active learning to expand into new state points and to describe the quantum nature of the nuclei. The final model, trained on 814 reference calculations, yields excellent results under a range of conditions, from liquid water at ambient and elevated temperatures and pressures to different phases of ice, and the air-water interface-all including nuclear quantum effects. This approach to committee models will enable the systematic development of robust machine learning models for a broad range of systems.

摘要

在机器学习领域中,委员会模型可以提高准确性、提供泛化误差估计,并支持主动学习策略,这是众所周知的。在这项工作中,我们将这些概念应用于基于人工神经网络的原子间势。与单个模型不同,共享相同原子环境描述符的多个模型会产生一个平均值,该平均值不仅优于其各个成员,而且还可以以委员会分歧的形式提供泛化误差的度量。我们不仅使用这种分歧来识别最相关的配置,以便在主动学习过程中构建模型的训练集,还在模拟过程中监控和偏向它,以控制泛化误差。这促进了委员会神经网络势及其训练集的自适应发展,同时将从头计算的数量保持在最低限度。为了说明这种方法的好处,我们将其应用于凝聚相水中的委员会模型的开发。从单个参考从头算模拟开始,我们使用主动学习来扩展到新的状态点,并描述核的量子性质。最终的模型在 814 个参考计算的训练下,在从环境温度和压力下的液态水到不同冰相以及水-空气界面的一系列条件下都能产生出色的结果——所有这些都包括核量子效应。这种委员会模型的方法将能够为广泛的系统系统地开发稳健的机器学习模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验