Behler Jörg, Parrinello Michele
Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland.
Phys Rev Lett. 2007 Apr 6;98(14):146401. doi: 10.1103/PhysRevLett.98.146401. Epub 2007 Apr 2.
The accurate description of chemical processes often requires the use of computationally demanding methods like density-functional theory (DFT), making long simulations of large systems unfeasible. In this Letter we introduce a new kind of neural-network representation of DFT potential-energy surfaces, which provides the energy and forces as a function of all atomic positions in systems of arbitrary size and is several orders of magnitude faster than DFT. The high accuracy of the method is demonstrated for bulk silicon and compared with empirical potentials and DFT. The method is general and can be applied to all types of periodic and nonperiodic systems.
对化学过程的精确描述通常需要使用像密度泛函理论(DFT)这样计算量很大的方法,这使得对大型系统进行长时间模拟变得不可行。在本信函中,我们引入了一种新型的DFT势能面神经网络表示方法,它能根据任意大小系统中所有原子的位置给出能量和力,并且比DFT快几个数量级。该方法对体硅的高精度得到了验证,并与经验势和DFT进行了比较。该方法具有通用性,可应用于所有类型的周期性和非周期性系统。