Suppr超能文献

通过混合波导中的等离子体 - 光子模式匹配实现高效二次谐波产生

Efficient Second Harmonic Generation via Plasmonic-Photonic Mode Matching in Hybrid Waveguide.

作者信息

Zhang Tianzhu, Cui Kaibo, Song Dudu, Ge Junhao, Rao Tao, Guo Quanbing, Zhang Xianghui, Zhang Shunping, Xu Hongxing

机构信息

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.

Henan Academy of Sciences, Zhengzhou 450046, China.

出版信息

Nano Lett. 2025 Jan 29;25(4):1420-1426. doi: 10.1021/acs.nanolett.4c04595. Epub 2025 Jan 17.

Abstract

Hybrid nonlinear plasmonic waveguides, characterized by a small mode area and large nonlinear susceptibility, present an intriguing and practical platform for the minimization of nonlinear photonic devices. Nevertheless, the intrinsic Ohmic loss associated with surface plasmon polaritons (SPPs) and modal dispersion imposes constraints on the effective interaction length and, consequently, the ultimate efficiency of nonlinear processes. In this study, we demonstrate an efficient second harmonic generation (SHG) within a hybrid plasmonic waveguide by leveraging SPP-like modes at the fundamental wave and photonic-like modes at the SHG under phase matching conditions. The presence of photonic-like modes significantly reduces the SHG losses, while the SPP-like modes improve the modal overlap, resulting in SHG conversion efficiency up to 8.5% W cm in a 55 μm-long waveguide. Our findings offer new avenues for the minimization of nonlinear photonic devices on a chip.

摘要

混合非线性等离子体波导具有小模式面积和大非线性极化率的特点,为实现非线性光子器件的小型化提供了一个引人关注且实用的平台。然而,与表面等离激元极化激元(SPP)相关的固有欧姆损耗和模式色散对有效相互作用长度以及非线性过程的最终效率施加了限制。在本研究中,我们通过在相位匹配条件下利用基波处的类表面等离激元极化激元模式和二次谐波处的类光子模式,在混合等离子体波导中实现了高效的二次谐波产生(SHG)。类光子模式的存在显著降低了二次谐波产生的损耗,而类表面等离激元极化激元模式则改善了模式重叠,在一个55μm长的波导中实现了高达8.5%W/cm的二次谐波产生转换效率。我们的研究结果为在芯片上实现非线性光子器件的小型化开辟了新途径。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验