Suppr超能文献

深度学习驱动的磁共振血管造影侧支循环图在急性前循环缺血性卒中中的临床可行性

Clinical feasibility of deep learning-driven magnetic resonance angiography collateral map in acute anterior circulation ischemic stroke.

作者信息

Jeon Ye Jin, Roh Hong Gee, Jung Sumin, Yang Hyun, Ki Hee Jong, Park Jeong Jin, Lee Taek-Jun, Shin Na Il, Lee Ji Sung, Kwak Jin Tae, Kim Hyun Jeong

机构信息

Department of Computer Science, University of California, La Jolla, San Diego, CA, USA.

Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2025 Jan 17;15(1):2304. doi: 10.1038/s41598-025-85731-7.

Abstract

To validate the clinical feasibility of deep learning-driven magnetic resonance angiography (DL-driven MRA) collateral map in acute ischemic stroke. We employed a 3D multitask regression and ordinal regression deep neural network, called as 3D-MROD-Net, to generate DL-driven MRA collateral maps. Two raters graded the collateral perfusion scores of both conventional and DL-driven MRA collateral maps and measured the grading time. They also qualitatively assessed the image quality of both collateral maps. Interrater and inter-method agreements for collateral perfusion grading between the two collateral maps were analyzed, along with a comparison of grading time and image quality. In the analysis of the 296 acute ischemic stroke patients, the inter-method agreement for collateral perfusion grading was almost perfect (κ = 0.96, 95% CI: 0.95-0.98). Compared to conventional MRA collateral maps, the time taken for collateral perfusion grading on DL-driven MRA collateral maps was shorter (P < 0.001 for rater 1 and P = 0.003 for rater 2), and the image quality of the DL-driven MRA collateral maps was superior (P < 0.001 for rater 1 and P = 0.002 for rater 2). The DL-driven MRA collateral map demonstrates clinical feasibility for collateral perfusion grading in acute ischemic stroke, with the added benefits of reduced generation and interpretation time, along with improved image quality of the MRA collateral map.

摘要

为验证深度学习驱动的磁共振血管造影(DL驱动的MRA)侧支循环图在急性缺血性卒中中的临床可行性。我们采用了一种名为3D-MROD-Net的三维多任务回归和有序回归深度神经网络来生成DL驱动的MRA侧支循环图。两名评估者对传统MRA侧支循环图和DL驱动的MRA侧支循环图的侧支循环灌注评分进行分级,并测量分级时间。他们还对两种侧支循环图的图像质量进行了定性评估。分析了两种侧支循环图之间侧支循环灌注分级的评估者间和方法间一致性,同时比较了分级时间和图像质量。在对296例急性缺血性卒中患者的分析中,侧支循环灌注分级的方法间一致性几乎完美(κ = 0.96,95% CI:0.95 - 0.98)。与传统MRA侧支循环图相比,DL驱动的MRA侧支循环图进行侧支循环灌注分级所需时间更短(评估者1的P < 0.001,评估者2的P = 0.003),且DL驱动的MRA侧支循环图的图像质量更优(评估者1的P < 0.001,评估者2的P = 0.002)。DL驱动的MRA侧支循环图在急性缺血性卒中侧支循环灌注分级方面显示出临床可行性,具有减少生成和解读时间以及提高MRA侧支循环图图像质量的额外优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f9f/11742650/867b6a90aa52/41598_2025_85731_Fig8_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验