Sato Daisuke, Hatano Asuka, Bers Donald M, Chen-Izu Ye, Izu Leighton T
Department of Pharmacology, University of California, Davis, Davis, California.
Department of Pharmacology, University of California, Davis, Davis, California.
Biophys J. 2025 Feb 18;124(4):693-703. doi: 10.1016/j.bpj.2025.01.006. Epub 2025 Jan 16.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output. MCT feedback enhances the L-type Ca current, sensitizes ryanodine receptors (RyRs), and augments SERCA pump activity, thereby maintaining contraction amplitude despite increased load. However, under certain conditions, MCT feedback can also promote cardiac alternans, seen as beat-to-beat variations in action potential duration, Ca transients, and contraction strength, which is a precursor to arrhythmias. While alternans can arise from instabilities in either membrane voltage or intracellular Ca cycling, underlying mechanisms of MCT-induced alternans, particularly electromechanically discordant alternans where stronger beats are paradoxically associated with shorter action potentials, remain unclear. In this study, we used a mathematical model of the ventricular myocyte to investigate the effects of MCT feedback on the dynamical system that generates alternans. We systematically analyzed how MCT feedback, acting through L-type Ca channels (LTCCs), RyRs, or SERCA, affects the stability of membrane voltage and Ca cycling, as well as the coupling between them. Our results show that MCT feedback can generally promote both concordant and discordant alternans in action potential and Ca transients, depending on the underlying instability mechanism. We found that MCT feedback through RyRs predominantly increases Ca instability, while LTCC and SERCA feedback have complex effects due to the interplay between stability and coupling alterations. We also showed how to determine underlying mechanisms from experimental and clinical observations. Our modeling studies provide new insights into the complex dynamics underlying cardiac alternans and highlight the importance of MCT feedback in the development of life-threatening arrhythmias in the heart under mechanical load.
在每一次心跳中,心肌细胞执行兴奋 - 钙信号 - 收缩(EC)偶联,以克服血管阻力泵血。心肌细胞能够感知机械负荷并激活机械 - 化学转导(MCT)机制,该机制为EC偶联提供反馈调节。MCT反馈对于心脏在负荷增加时上调收缩以维持心输出量很重要。MCT反馈增强L型钙电流,使兰尼碱受体(RyRs)敏感,并增强肌浆网钙ATP酶(SERCA)泵的活性,从而在负荷增加时维持收缩幅度。然而,在某些情况下,MCT反馈也可促进心脏交替变化,表现为动作电位持续时间、钙瞬变和收缩强度的逐搏变化,这是心律失常的先兆。虽然交替变化可能源于膜电压或细胞内钙循环的不稳定性,但MCT诱导的交替变化的潜在机制,特别是机电不一致的交替变化(即更强的搏动与更短的动作电位自相矛盾地相关)仍不清楚。在本研究中,我们使用心室肌细胞的数学模型来研究MCT反馈对产生交替变化的动态系统的影响。我们系统地分析了通过L型钙通道(LTCCs)、RyRs或SERCA起作用的MCT反馈如何影响膜电压和钙循环的稳定性以及它们之间的偶联。我们的结果表明,取决于潜在的不稳定性机制,MCT反馈通常可促进动作电位和钙瞬变中的一致和不一致交替变化。我们发现通过RyRs的MCT反馈主要增加钙不稳定性,而LTCC和SERCA反馈由于稳定性和偶联改变之间的相互作用而具有复杂的影响。我们还展示了如何从实验和临床观察中确定潜在机制。我们的建模研究为心脏交替变化背后的复杂动力学提供了新的见解,并强调了MCT反馈在机械负荷下心源性危及生命的心律失常发展中的重要性。