Suppr超能文献

利用机器学习从婴儿颅骨骨折预测跌倒参数。

Predicting fall parameters from infant skull fractures using machine learning.

作者信息

Hirst Jacob N, Phung Brian R, Johnsson Bjorn T, He Junyan, Coats Brittany, Spear Ashley D

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA.

出版信息

Biomech Model Mechanobiol. 2025 Apr;24(2):521-537. doi: 10.1007/s10237-024-01922-7. Epub 2025 Jan 18.

Abstract

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma. We utilize a state-of-the-art finite element fracture simulation framework to generate a unique dataset of skull fracture patterns from simulated falls. We then extract features from the resulting fracture patterns in this dataset to be used as input into machine learning models. We compare seven machine learning models on their abilities to predict two fall parameters: impact site and fall height. The results from our best-performing models demonstrate that while predicting the exact fall height remains challenging ( 0.27 for the ridge regression model), we can effectively identify potential impact sites ( between 0.65 and 0.76 for the random forest regression model). This work not only provides a tool to enhance the ability to assess abuse in cases of pediatric head trauma, but also advocates for advancements in computational models to simulate complex skull fractures.

摘要

当婴儿因颅骨骨折入院时,医疗人员必须区分意外头部创伤和虐待性头部创伤病例。在此类情况下,关于事件的信息有限,证人陈述也并非总是可靠。在本研究中,我们引入了一种全新的、数据驱动的方法来预测导致婴儿颅骨骨折的跌倒参数,以协助判定虐待性头部创伤。我们利用先进的有限元骨折模拟框架,从模拟跌倒中生成独特的颅骨骨折模式数据集。然后,我们从该数据集中生成的骨折模式中提取特征,用作机器学习模型的输入。我们比较了七种机器学习模型预测两个跌倒参数的能力:撞击部位和跌倒高度。我们表现最佳的模型结果表明,虽然预测确切的跌倒高度仍然具有挑战性(岭回归模型的预测准确率为0.27),但我们可以有效地识别潜在的撞击部位(随机森林回归模型的预测准确率在0.65至0.76之间)。这项工作不仅提供了一种工具,以增强评估小儿头部创伤病例中虐待行为的能力,还倡导在计算模型方面取得进展,以模拟复杂的颅骨骨折。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验