Suppr超能文献

利用机器学习模型评估卵巢癌微环境中的免疫浸润:一种单细胞分析方法。

Leveraging machine learning models to evaluate immune infiltration in the ovarian cancer microenvironment: a single-cell analysis approach.

作者信息

Liu Jie, Xia Baoguo, Li Bingxin, Liang Hui

机构信息

Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, 266071, China.

Department of Reproductive Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.

出版信息

Discov Oncol. 2025 Jul 9;16(1):1291. doi: 10.1007/s12672-025-03018-9.

Abstract

BACKGROUND

The prognosis of ovarian cancer is closely related to the degree of immune cell infiltration within the tumor microenvironment. However, current methods for assessing immune infiltration have certain subjective limitations. This study aimed to establish an objective assessment model based on machine learning and single-cell RNA sequencing data to provide a basis for the individualized immunotherapy of ovarian cancer.

METHODS

This study integrated gene expression data from multiple public databases for ovarian cancer, including different histological subtypes and immune infiltration levels. We utilized single-cell RNA sequencing data to characterize immune cell populations with unprecedented resolution. After correcting for batch effects, we constructed machine learning models based on RandomForest and SVM to predict the immune infiltration status of samples at the single-cell level. The models were evaluated and optimized using cross-validation methods.

RESULTS

Our machine learning models demonstrated high accuracy and robustness in predicting the immune infiltration status of ovarian cancer. The RandomForest model achieved an AUC of 0.88 on an independent test set, outperforming traditional immune scoring indices. Single-cell analysis revealed distinct immune cell subpopulations and their spatial distribution within tumors. The models also identified key gene features associated with immune infiltration at cellular resolution, providing clues for further understanding the immune microenvironment of ovarian cancer.

CONCLUSION

The machine learning-based approach for evaluating immune infiltration in ovarian cancer at the single-cell level can rapidly and objectively predict the immune status, and discover potential biomarkers and therapeutic targets. This method provides a new strategy and tool for achieving individualized immunotherapy for ovarian cancer. Clinical trial declaration: This research is not a clinical trial and is exempt from clinical trial registration requirements.

摘要

背景

卵巢癌的预后与肿瘤微环境中免疫细胞浸润程度密切相关。然而,目前评估免疫浸润的方法存在一定的主观局限性。本研究旨在基于机器学习和单细胞RNA测序数据建立一种客观评估模型,为卵巢癌的个体化免疫治疗提供依据。

方法

本研究整合了来自多个卵巢癌公共数据库的基因表达数据,包括不同的组织学亚型和免疫浸润水平。我们利用单细胞RNA测序数据以前所未有的分辨率表征免疫细胞群体。在校正批次效应后,我们基于随机森林和支持向量机构建机器学习模型,以预测单细胞水平样本的免疫浸润状态。使用交叉验证方法对模型进行评估和优化。

结果

我们的机器学习模型在预测卵巢癌免疫浸润状态方面表现出高准确性和稳健性。随机森林模型在独立测试集上的AUC达到0.88,优于传统免疫评分指标。单细胞分析揭示了肿瘤内不同的免疫细胞亚群及其空间分布。模型还在细胞分辨率上识别出与免疫浸润相关的关键基因特征,为进一步了解卵巢癌免疫微环境提供了线索。

结论

基于机器学习的方法在单细胞水平评估卵巢癌免疫浸润,能够快速、客观地预测免疫状态,并发现潜在生物标志物和治疗靶点。该方法为实现卵巢癌个体化免疫治疗提供了新策略和工具。临床试验声明:本研究不是临床试验,无需进行临床试验注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7457/12240924/987bf276a3f3/12672_2025_3018_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验