Sousa A S, Serra J, Estevens C, Costa R, Ribeiro A J
Universidade de Coimbra, Faculdade de Farmácia, Coimbra 3000-148 Portugal; Grupo Tecnimede, Quinta da Cerca, Caixaria, Dois Portos 2565-187, Portugal.
Grupo Tecnimede, Quinta da Cerca, Caixaria, Dois Portos 2565-187, Portugal.
Int J Pharm. 2025 Feb 25;671:125230. doi: 10.1016/j.ijpharm.2025.125230. Epub 2025 Jan 16.
The pharmaceutical industry is striving to develop innovative and promising tools, increasingly embracing new data-driven approaches, to understand, improve and accelerate the drug product development process. While extended release (ER) oral formulations offer a number of advantages, including maintenance of therapeutic drug levels, a reduction in dosing frequency, and minimization of side effects, achieving consistent drug release profiles remains a significant challenge. As a critical attribute for drug absorption into systemic circulation, in vitro dissolution testing represents a time-consuming and complex method for the evaluation of such formulations. The main objective of this study was to develop a model for predicting drug dissolution in the quality by design (QbD)-based development of ER oral hydrophilic matrix tablets comprising polyethylene oxide (PEO). Two main modeling approaches are conducted and compared: (i) model screening to fit and compare multiple predictive machine learning (ML) models and then deploy the best model, in this case, artificial neural networks (ANN), and (ii) functional data analysis (FDA) combined with the design of experiments (DoE) that fit a smoothing model to each dissolution curve as a continuous function. A dataset comprising 91 ER matrix tablet formulations was analyzed, with the dissolution data split into training, validation, and test sets (70%, 20%, and 10%, respectively). The results demonstrated that both ANN and functional DoE (FDOE) models achieved high similarity with the experimental dissolution profiles, as indicated by f2 values ranging from 48 to 88 for the FDOE and 52 to 88 for ANN. This work highlights the potential of integrating advanced data-driven modeling techniques into ER drug development to enhance dissolution prediction accuracy and streamline the formulation process, thus reducing time and costs.
制药行业正在努力开发创新且有前景的工具,越来越多地采用新的数据驱动方法,以理解、改进并加速药品开发过程。虽然缓释(ER)口服制剂具有诸多优势,包括维持治疗药物水平、减少给药频率以及将副作用降至最低,但实现一致的药物释放曲线仍然是一项重大挑战。作为药物吸收进入体循环的关键属性,体外溶出度测试是评估此类制剂的一种耗时且复杂的方法。本研究的主要目的是开发一种模型,用于在基于质量源于设计(QbD)的包含聚环氧乙烷(PEO)的ER口服亲水性基质片剂的开发中预测药物溶出度。进行并比较了两种主要的建模方法:(i)模型筛选,以拟合和比较多个预测性机器学习(ML)模型,然后部署最佳模型,在这种情况下为人工神经网络(ANN);(ii)功能数据分析(FDA)与实验设计(DoE)相结合,将平滑模型拟合到每个溶出曲线作为连续函数。分析了一个包含91种ER基质片剂配方的数据集,将溶出数据分为训练集、验证集和测试集(分别为70%、20%和10%)。结果表明,ANN模型和功能DoE(FDOE)模型与实验溶出曲线都具有高度相似性,FDOE的f2值范围为48至88,ANN的f2值范围为52至88。这项工作突出了将先进的数据驱动建模技术整合到ER药物开发中的潜力,以提高溶出度预测准确性并简化制剂过程,从而减少时间和成本。