Suppr超能文献

NERINE揭示了跨多种表型的基因网络中的罕见变异关联,并暗示帕金森病中的一个子网。

NERINE reveals rare variant associations in gene networks across multiple phenotypes and implicates an subnetwork in Parkinson's disease.

作者信息

Nazeen Sumaiya, Wang Xinyuan, Morrow Autumn, Strom Ronya, Ethier Elizabeth, Ritter Dylan, Henderson Alexander, Afroz Jalwa, Stitziel Nathan O, Gupta Rajat M, Luk Kelvin, Studer Lorenz, Khurana Vikram, Sunyaev Shamil R

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

bioRxiv. 2025 Jan 10:2025.01.07.631688. doi: 10.1101/2025.01.07.631688.

Abstract

Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation. While single-gene analyses often lack power due to rare variant sparsity, expanding the unit of association to networks offers a powerful alternative, provided it integrates network connections. Here, we introduce NERINE, a hierarchical model-based association test that integrates gene interactions that integrates gene interactions while remaining robust to network inaccuracies. Applied to biobanks, NERINE uncovers compelling network associations for breast cancer, cardiovascular diseases, and type II diabetes, undetected by single-gene tests. For Parkinson's disease (PD), NERINE newly substantiates several GWAS candidate loci with rare variant signal and synergizes human genetics with experimental screens targeting cardinal PD pathologies: dopaminergic neuron survival and alpha-synuclein pathobiology. CRISPRi-screening in human neurons and NERINE converge on , revealing an intraneuronal α-synuclein/prolactin stress response that may impact resilience to PD pathologies.

摘要

基因网络蕴含着生物学知识,常常与多基因疾病相关联。虽然模型系统实验能产生许多看似合理的基因网络,但要验证它们在人类表型中的作用,需要来自人类遗传学的证据。罕见变异为此类验证提供了最直接的途径。虽然单基因分析往往因罕见变异的稀疏性而缺乏效力,但将关联单位扩展到网络提供了一个有力的替代方法,前提是它整合了网络连接。在这里,我们介绍了NERINE,一种基于分层模型的关联测试,它在整合基因相互作用的同时,对网络不准确之处仍保持稳健性。应用于生物样本库时,NERINE揭示了乳腺癌、心血管疾病和II型糖尿病令人信服的网络关联,这些关联是单基因测试未检测到的。对于帕金森病(PD),NERINE用罕见变异信号新证实了几个全基因组关联研究(GWAS)候选基因座,并将人类遗传学与针对PD主要病理的实验筛选相结合:多巴胺能神经元存活和α-突触核蛋白病理生物学。在人类神经元中进行的CRISPR干扰筛选与NERINE得出了一致的结果,揭示了一种可能影响对PD病理抵抗力的神经元内α-突触核蛋白/催乳素应激反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82be/11741352/876c27ab74d2/nihpp-2025.01.07.631688v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验