Zhang Jingyi, Kaur Gurleen, Cai Eva, Gutierrez Oscar Torres, Liu Xiaoliang, Baboo Sabyasachi, Diedrich Jolene K, Zhu Ju-Fen, Myers Benjamin R, Yates John R, Ge Xuecai
Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA.
Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, San Diego, California, USA.
bioRxiv. 2025 Jan 7:2025.01.06.631593. doi: 10.1101/2025.01.06.631593.
The GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood. To address this question, we leveraged the proximity labeling tool TurboID and conducted a time-resolved proteomic study of Smo-associated proteins over the course of Hh signaling activation. Our results not only confirmed previously reported Smo interactors but also uncovered new Smo-associated proteins. We characterized one of these new Smo interactors, Grk-interacting protein 1 (Git1), previously known to modulate GPCR signaling. We found that Git1 localizes to the base of the primary cilium, where it controls the cilium transport of Grk2, an early event in Hh signaling. Loss of Git1 impairs Smo phosphorylation by Grk2, a critical step for Smo-PKA interaction, leading to attenuated Hh signaling and reduced cell proliferation in granule neuron precursors. These results revealed a critical regulatory mechanism of Grk2 phosphorylation on Smo in the primary cilium. Our Smo-TurboID proteomic dataset provides a unique resource for investigating Smo regulations across different stages of Hh pathway activation.
类G蛋白偶联受体蛋白平滑肌瘤(Smo)在刺猬(Hh)信号通路中起关键作用。为启动Hh信号传导,活性Smo在初级纤毛中与蛋白激酶A(PKA)的催化亚基结合并抑制其活性,这一过程由G蛋白偶联受体激酶2(Grk2)促进。然而,这一过程背后的确切调控机制以及Smo激活之前和之后的事件仍知之甚少。为解决这个问题,我们利用邻近标记工具TurboID,对Hh信号激活过程中与Smo相关的蛋白质进行了时间分辨蛋白质组学研究。我们的结果不仅证实了先前报道的Smo相互作用蛋白,还发现了新的Smo相关蛋白。我们对其中一种新的Smo相互作用蛋白Grk相互作用蛋白1(Git1)进行了表征,该蛋白先前已知可调节G蛋白偶联受体信号传导。我们发现Git1定位于初级纤毛的基部,在那里它控制Grk2的纤毛运输,这是Hh信号传导中的一个早期事件。Git1的缺失会损害Grk2对Smo的磷酸化作用,而这是Smo与PKA相互作用的关键步骤,导致颗粒神经元前体细胞中Hh信号减弱和细胞增殖减少。这些结果揭示了初级纤毛中Grk2对Smo磷酸化的关键调控机制。我们的Smo-TurboID蛋白质组数据集为研究Hh信号通路激活不同阶段的Smo调控提供了独特的资源。