Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857.
J Neurosci. 2021 Aug 11;41(32):6850-6863. doi: 10.1523/JNEUROSCI.3005-20.2021. Epub 2021 Jul 1.
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor- in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of in GCP proliferation and ciliogenesis. Furthermore, 's potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma. Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.
Sonic hedgehog (Shh) 信号从初级纤毛发出,驱动小脑颗粒细胞前体细胞 (GCP) 的增殖。 hedgehog (Hh) 途径抑制剂的突变通常会导致成神经管细胞瘤,这是一种最常见和恶性的儿童脑肿瘤,起源于异常的 GCP 增殖。我们证明,在雌雄小鼠大脑中,巢蛋白 Cre 驱动的 Shh 途径抑制剂条件敲除 (CKO) 导致小脑叶片的模式发生错误,并在早期发育过程中导致 GCP 增殖增加,但在成年阶段没有普遍发生成神经管细胞瘤。引人注目的是,耗尽的 GCP 表现出 Shh 途径活性的基础水平上调,尽管初级纤毛的纤毛发生异常。与纤毛形成受损一致,耗尽的 GCP 对 Shh 配体和 Smoothened (Smo) 激动剂 SAG 对 Hh 途径活性的刺激作用不敏感,并且对 SAG 反应中 Smo 在初级纤毛上的定位刺激作用减弱。这些结果表明 Rab23 对 Hh 信号级联具有多维作用。Rab23 抑制 Shh 信号的基础水平,同时促进初级纤毛依赖性 Shh 信号的激活。总之,我们的研究结果揭示了 Rab23 在 GCP 增殖和纤毛发生中的重要作用。此外,通过初级纤毛和 Smo 增强 Shh 信号通路表明了一种针对 Smo/初级纤毛驱动的成神经管细胞瘤的潜在新治疗策略。已知初级纤毛和 Sonic hedgehog (Shh) 信号调节颗粒细胞前体细胞 (GCP) 的增殖。Shh 信号通路的异常过度激活会异位增加 GCP 的增殖,并导致称为成神经管细胞瘤的恶性儿童肿瘤。然而,GCP 肿瘤发生的遗传和分子调控级联仍不完全清楚。我们的发现揭示了 Rab23 作为 Hedgehog (Hh) 信号通路活性和 GCP 细胞增殖的新型调节剂。有趣的是,我们证明 Rab23 在调节 Shh 信号中具有双重功能;它增强初级纤毛和 Shh/Smoothened (Smo)-依赖性信号激活,同时拮抗基础水平的 Hh 活性。我们的数据提出了 Rab23 在 Smo 上游调节外源性 Shh 信号中的一个以前未被充分认识的方面。这项研究为 Shh 信号介导的 GCP 增殖和肿瘤发生的机制提供了新的见解。