Suppr超能文献

聚合物包被脂质体与离心纺丝微纤维融合作为混合材料以增强缓释效果。

Fusion of polymer-coated liposomes and centrifugally spun microfibers as hybrid materials to enhance sustained release.

作者信息

Agiba Ahmed M, Rodríguez Huerta Luis Gerardo, Ulloa-Castillo Nicolás A, Sierra-Valdez Francisco J, Beigi-Boroujeni Saeed, Lozano Omar, Aguirre-Soto Alan

机构信息

School of Engineering and Sciences, Tecnologico de Monterrey Monterrey 64849 Nuevo León Mexico

Center for Innovation in Digital Technologies, School of Engineering and Sciences, Tecnologico de Monterrey Monterrey 64849 Nuevo León Mexico.

出版信息

Nanoscale Adv. 2024 Dec 26;7(4):1009-1017. doi: 10.1039/d4na00835a. eCollection 2025 Feb 11.

Abstract

Liposomes are employed for the delivery of molecular cargo in several classes of systems. For instance, the embedding of loaded liposomes in polymeric fibrous scaffolds has enabled the creation of hybrid materials that mimic biological membranes. Liposomes with unmodified surfaces have been predominantly integrated into fibers, which leads to instabilities due to interfacial incompatibility. In addition, electrospinning has been almost exclusively employed for fiber fabrication, which limits the potential for scale-up production. Here, we present the fabrication of hybrid biomimetic materials by fusing polymer-coated liposomes to force-spun microfibers to increase the stability of the hybrid materials and enhance the sustained release of the cargo. l-α-Phosphatidylcholine liposomes were coated with chitosan or polyethylene glycol (PEG). The nano-differential scanning calorimetry results confirm that polymer coating does not affect the phase transition temperature ( ) of the liposomes, where only the model drug, quercetin, reduced . Centrifugal spinning was employed to fabricate hydrophobic polycaprolactone (PCL) microfibers at various polymer concentrations and using various solvents and spinning parameters to increase the yield at the lowest fiber diameter. The highest microfiber production rate obtained occurred at a 20% (w/v) PCL concentration in 50 : 50 (v/v) chloroform and methanol solution with an average fiber diameter of 584.85 ± 26.30 nm. The non-chemical fusion of the polymer-coated liposomes and the fibrous scaffolds was promoted by immersion at > , under ultrasonication. We hypothesize that the fusion is driven by hydrophobic interactions between the liposomes and the fibers, which merge the materials through the lipid bilayer. The fused hybrid material solved the burst release problem observed when adhering plain liposomes to nanofibers. Both PEG and chitosan yielded a sustained release, where the release rate with the former was faster. These results demonstrate that the fusion of polymer-coated liposomes and microfibers enables more effective blending of the loaded carriers into the polymer microfibers. Ultimately, the fused liposome/microfiber hybrids are stable matrices and enhance the sustained release of molecular cargo.

摘要

脂质体被用于在几类系统中递送分子货物。例如,将负载的脂质体嵌入聚合物纤维支架中能够制备出模拟生物膜的杂化材料。表面未修饰的脂质体主要被整合到纤维中,由于界面不相容性会导致不稳定性。此外,静电纺丝几乎一直被用于纤维制造,这限制了扩大生产规模的潜力。在此,我们展示了通过将聚合物包被的脂质体与强制纺丝的微纤维融合来制备杂化仿生材料,以提高杂化材料的稳定性并增强货物的持续释放。l-α-磷脂酰胆碱脂质体用壳聚糖或聚乙二醇(PEG)进行包被。纳米差示扫描量热法结果证实,聚合物包被不会影响脂质体的相变温度(),只有模型药物槲皮素会降低相变温度。采用离心纺丝在不同聚合物浓度下、使用不同溶剂和纺丝参数来制备疏水性聚己内酯(PCL)微纤维,以在最低纤维直径下提高产量。在50∶50(v/v)氯仿和甲醇溶液中,PCL浓度为20%(w/v)时获得了最高的微纤维生产率,平均纤维直径为584.85±26.30 nm。在超声处理下,于>时通过浸泡促进聚合物包被的脂质体与纤维支架的非化学融合。我们推测这种融合是由脂质体与纤维之间的疏水相互作用驱动的,这种相互作用通过脂质双层使材料融合。融合后的杂化材料解决了将普通脂质体附着到纳米纤维上时观察到的突释问题。PEG和壳聚糖都实现了持续释放,其中前者的释放速率更快。这些结果表明,聚合物包被的脂质体与微纤维的融合能够使负载的载体更有效地混入聚合物微纤维中。最终,融合的脂质体/微纤维杂化物是稳定的基质,并增强了分子货物的持续释放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1487/11812632/da14c9882429/d4na00835a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验