Jiang Hao, Qian Yishan, Zhang Liqiang, Jiang Tao, Tai Yonghang
Engineering Research Center of Photoelectric Detection and Perception Technology, Yunnan Normal University, Kunming, China.
Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming, China.
Front Public Health. 2025 Jan 3;12:1449798. doi: 10.3389/fpubh.2024.1449798. eCollection 2024.
The rising incidence of Alzheimer's disease (AD) poses significant challenges to traditional diagnostic methods, which primarily rely on neuropsychological assessments and brain MRIs. The advent of deep learning in medical diagnosis opens new possibilities for early AD detection. In this study, we introduce retinal vessel segmentation methods based on U-Net ad iterative registration Learning (ReIU), which extract retinal vessel maps from OCT angiography (OCT-A) facilities. Our method achieved segmentation accuracies of 79.1% on the DRIVE dataset, 68.3% on the HRF dataset. Utilizing a multimodal dataset comprising both healthy and AD subjects, ReIU extracted vascular density from fundus images, facilitating primary AD screening with a classification accuracy of 79%. These results demonstrate ReIU's substantial accuracy and its potential as an economical, non-invasive screening tool for Alzheimer's disease. This study underscores the importance of integrating multi-modal data and deep learning techniques in advancing the early detection and management of Alzheimer's disease.
阿尔茨海默病(AD)发病率的不断上升给传统诊断方法带来了重大挑战,传统方法主要依赖神经心理学评估和脑部核磁共振成像(MRI)。深度学习在医学诊断中的出现为AD的早期检测开辟了新的可能性。在本研究中,我们引入了基于U-Net和迭代配准学习(ReIU)的视网膜血管分割方法,该方法可从光学相干断层扫描血管造影(OCT-A)设备中提取视网膜血管图。我们的方法在DRIVE数据集上的分割准确率达到79.1%,在HRF数据集上达到68.3%。利用包含健康和AD受试者的多模态数据集,ReIU从眼底图像中提取血管密度,以79%的分类准确率促进AD的初步筛查。这些结果证明了ReIU的高准确率及其作为一种经济、无创的阿尔茨海默病筛查工具的潜力。本研究强调了整合多模态数据和深度学习技术在推进阿尔茨海默病早期检测和管理方面的重要性。