Peng Xiuhua, Bian Hupo, Zhao Hongxing, Jia Dan, Li Mei, Li Wenhui, Xu Pengliang
Department of Radiology, The First People's Hospital of Huzhou, Huzhou, China.
Department of Respiratory Medicine, The First People's Hospital of Huzhou, Huzhou, China.
Front Oncol. 2025 Jan 3;14:1495911. doi: 10.3389/fonc.2024.1495911. eCollection 2024.
This study employed the R software bibliometrix and the visualization tools CiteSpace and VOSviewer to conduct a bibliometric analysis of literature on lung cancer spread through air spaces (STAS) published since 2015.
On September 1, 2024, a computer-based search was performed in the Web of Science (WOS) Core Collection dataset for literature on lung cancer STAS published between January 1, 2015, and August 31, 2024. VOSviewer was used to visually analyze countries, institutions, authors, co-cited authors, and keywords, while CiteSpace was utilized to analyze institutional centrality, references, keyword bursts, and co-citation literature. Descriptive analysis tables were created using Excel 2021.
A total of 243 articles were included from the WOS, with a significant increase in annual publications observed since 2018. China, Kadota K, and Fudan University were leading countries, authors, and institutions by publication volume. The top three authors by co-citation count were Kadota K, Chen C, and Adusumilli PS. The journal with the highest publication volume was Lung Cancer, with the most influential journal among the top 10 being the Journal of Thoracic Oncology. The most frequently cited reference was "Lobectomy Is Associated with Better Outcomes than Sublobar Resection in Spread through Air Spaces (STAS)-Positive T1 Lung Adenocarcinoma: A Propensity Score-Matched Analysis." Keyword clustering categorized the research into four main areas: pathological studies of lung cancer STAS, biological mechanisms, prognostic assessment, and imaging analysis. Current research hotspots include deep learning, lung squamous cell carcinoma, and air spaces STAS.
The current research on lung cancer STAS primarily focuses on pathological studies, biological mechanisms, prognostic assessments, and preoperative imaging model predictions. This study's findings provide new insights and directions for future research in this area.
https://www.crd.york.ac.uk/prospero/#myprospero, identifier 589442.
本研究采用R软件bibliometrix以及可视化工具CiteSpace和VOSviewer,对2015年以来发表的关于肺癌气腔播散(STAS)的文献进行文献计量分析。
2024年9月1日,在Web of Science(WOS)核心合集数据集中进行基于计算机的检索,以获取2015年1月1日至2024年8月31日期间发表的关于肺癌STAS的文献。VOSviewer用于直观分析国家、机构、作者、共被引作者和关键词,而CiteSpace用于分析机构中心性、参考文献、关键词突现和共被引文献。使用Excel 2021创建描述性分析表。
从WOS共纳入243篇文章,自2018年以来年度发表量显著增加。按发表量排名,中国、门田健(Kadota K)和复旦大学分别是领先的国家、作者和机构。按共被引次数排名前三的作者是门田健(Kadota K)、陈诚(Chen C)和阿杜苏米利·P·S(Adusumilli PS)。发表量最高的期刊是《肺癌》(Lung Cancer),前10名中最具影响力的期刊是《胸部肿瘤学杂志》(Journal of Thoracic Oncology)。被引用次数最多的参考文献是“肺叶切除术与气腔播散(STAS)阳性T1期肺腺癌亚肺叶切除相比预后更好:一项倾向评分匹配分析”。关键词聚类将研究分为四个主要领域:肺癌STAS的病理学研究、生物学机制、预后评估和影像学分析。当前的研究热点包括深度学习、肺鳞状细胞癌和气腔STAS。
目前关于肺癌STAS的研究主要集中在病理学研究、生物学机制、预后评估和术前影像学模型预测。本研究结果为该领域未来研究提供了新的见解和方向。