Suppr超能文献

联合心脏和肾脏生物标志物建立心脏手术相关急性肾损伤的临床早期预测模型:一项前瞻性观察研究。

Combining cardiac and renal biomarkers to establish a clinical early prediction model for cardiac surgery-associated acute kidney injury: a prospective observational study.

作者信息

Li Jiaxin, Wu Jinlin, Lei Liming, Gu Bowen, Wang Han, Xu Yusheng, Chen Chunbo, Fang Miaoxian

机构信息

Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

出版信息

J Thorac Dis. 2024 Dec 31;16(12):8399-8416. doi: 10.21037/jtd-24-1185. Epub 2024 Dec 27.

Abstract

BACKGROUND

Cardiac surgery-associated acute kidney injury (CSA-AKI) is a prevalent complication with poor outcomes, and its early prediction remains a challenging task. Currently available biomarkers for acute kidney injury (AKI) include serum cystatin C (sCysC) and urinary N-acetyl-β-D-glucosaminidase (uNAG). Widely used biomarkers for assessing cardiac function and injury are N-terminal pro B-type natriuretic peptide (NT-proBNP) and cardiac troponin I (cTnI). In light of this, our study aimed to evaluate the effectiveness of these four biomarkers in predicting CSA-AKI.

METHODS

This prospective observational study enrolled adult patients who had undergone cardiac surgery. The clinical prediction model for CSA-AKI was developed using the least absolute shrinkage and selection operator (LASSO) regression method. The model's performance was assessed using the area under the curve of the receiver operating characteristic (ROC-AUC), decision curve analysis (DCA), and calibration curves. Furthermore, a separate validation cohort was constructed to externally validate the prediction model. Additionally, a risk nomogram was created to facilitate risk assessment and prediction.

RESULTS

In the modeling cohort consisting of 689 patients and the validation cohort consisting of 313 patients, the total incidence of CSA-AKI was 33.4%. The LASSO regression identified several predictors, including age, history of hypertension, baseline serum creatinine (sCr), coronary artery bypass grafting combined with valve surgery, cardiopulmonary bypass duration, preoperative albumin, hemoglobin, postoperative NT-proBNP, cTnI, sCysC, and uNAG. The constructed clinical prediction model demonstrated robust performance, with a ROC-AUC of 0.830 (0.800-0.860) in the modeling cohort and 0.840 (0.790-0.880) in the validation cohort. Furthermore, both calibration and DCA indicated good model fit and clinical benefit.

CONCLUSIONS

This study demonstrates that incorporating the immediately postoperative renal biomarkers, sCysC and uNAG, along with the cardiac biomarkers, NT-proBNP and cTnI, into a clinical early prediction model can significantly enhance the accuracy of predicting CSA-AKI. These findings suggest that a comprehensive approach combining both renal and cardiac biomarkers holds promise for improving the early detection and prediction of CSA-AKI.

摘要

背景

心脏手术相关急性肾损伤(CSA-AKI)是一种常见并发症,预后较差,其早期预测仍然是一项具有挑战性的任务。目前可用的急性肾损伤(AKI)生物标志物包括血清胱抑素C(sCysC)和尿N-乙酰-β-D-氨基葡萄糖苷酶(uNAG)。广泛用于评估心脏功能和损伤的生物标志物是N末端B型利钠肽原(NT-proBNP)和心肌肌钙蛋白I(cTnI)。有鉴于此,我们的研究旨在评估这四种生物标志物在预测CSA-AKI方面的有效性。

方法

这项前瞻性观察性研究纳入了接受心脏手术的成年患者。使用最小绝对收缩和选择算子(LASSO)回归方法建立CSA-AKI的临床预测模型。使用受试者操作特征曲线下面积(ROC-AUC)、决策曲线分析(DCA)和校准曲线评估模型的性能。此外,构建了一个单独的验证队列以对预测模型进行外部验证。此外,还创建了一个风险列线图以促进风险评估和预测。

结果

在由689名患者组成的建模队列和由313名患者组成的验证队列中,CSA-AKI的总发生率为33.4%。LASSO回归确定了几个预测因素,包括年龄、高血压病史、基线血清肌酐(sCr)、冠状动脉旁路移植术联合瓣膜手术、体外循环持续时间、术前白蛋白、血红蛋白、术后NT-proBNP、cTnI、sCysC和uNAG。构建的临床预测模型表现出强大的性能,在建模队列中的ROC-AUC为0.830(0.800-0.860),在验证队列中的ROC-AUC为0.840(0.790-0.880)。此外,校准和DCA均表明模型拟合良好且具有临床益处。

结论

本研究表明,将术后即刻的肾脏生物标志物sCysC和uNAG与心脏生物标志物NT-proBNP和cTnI纳入临床早期预测模型,可以显著提高预测CSA-AKI的准确性。这些发现表明,结合肾脏和心脏生物标志物的综合方法有望改善CSA-AKI的早期检测和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e6/11740080/f35aae89e60c/jtd-16-12-8399-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验