Suppr超能文献

跨越拓扑相变的电路复杂性。

Circuit complexity across a topological phase transition.

作者信息

Liu Fangli, Whitsitt Seth, Curtis Jonathan B, Lundgren Rex, Titum Paraj, Yang Zhi-Cheng, Garrison James R, Gorshkov Alexey V

机构信息

Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA.

Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev Res. 2020;2(1). doi: 10.1103/physrevresearch.2.013323.

Abstract

We use Nielsen's geometric approach to quantify the circuit complexity in a one-dimensional Kitaev chain across a topological phase transition. We find that the circuit complexities of both the ground states and nonequilibrium steady states of the Kitaev model exhibit nonanalytical behaviors at the critical points, and thus can be used to detect both and topological phase transitions. Moreover, we show that the locality property of the real-space optimal Hamiltonian connecting two different ground states depends crucially on whether the two states belong to the same or different phases. This provides a concrete example of classifying different gapped phases using Nielsen's circuit complexity. We further generalize our results to a Kitaev chain with long-range pairing, and we discuss generalizations to higher dimensions. Our result opens up an avenue for using circuit complexity as a tool to understand quantum many-body systems.

摘要

我们采用尼尔森的几何方法来量化一维基塔耶夫链在拓扑相变过程中的电路复杂度。我们发现,基塔耶夫模型的基态和非平衡稳态的电路复杂度在临界点均表现出非解析行为,因此可用于检测 和 拓扑相变。此外,我们表明连接两个不同基态的实空间最优哈密顿量的局域性属性关键取决于这两个态是否属于同一相或不同相。这为使用尼尔森的电路复杂度对不同的能隙相进行分类提供了一个具体示例。我们进一步将结果推广到具有长程配对的基塔耶夫链,并讨论了向更高维度的推广。我们的结果为使用电路复杂度作为理解量子多体系统的工具开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd7/11740100/d60b1a318071/nihms-1629725-f0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验