Suppr超能文献

为量子场论态定义复杂性。

Toward a Definition of Complexity for Quantum Field Theory States.

机构信息

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.

Max Planck Institute for Gravitational Physics, Potsdam-Golm D-14476, Germany.

出版信息

Phys Rev Lett. 2018 Mar 23;120(12):121602. doi: 10.1103/PhysRevLett.120.121602.

Abstract

We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form su(1,1) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.

摘要

我们研究了连续多体量子系统中态的复杂性概念。我们专注于高斯态,包括自由量子场论的基态及其在连续多标度纠缠重整化假设的背景下遇到的近似。我们用于量化态复杂性的建议基于 Fubini-Study 度量。它导致在给定状态相关度量的情况下,对变换中每个门(无穷小生成器)的应用次数进行计数。我们针对保持动量的二次生成器最小化定义的复杂性,这些生成器形成 su(1,1)代数。在由这些操作生成的高斯态流形上,Fubini-Study 度量分解为具有最小复杂度回路的双曲平面,这些回路简化为已知的测地线。尽管我们研究的是远远超出爱因斯坦引力对偶存在的范围的量子场论,但我们发现我们的结果与全息复杂度建议之间存在惊人的相似之处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验