Xin Huilong, Cai Zhe, Hao Jiahui, An Jing, Li Yi, Wen Min, Jia Zhaojun
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
Adv Healthc Mater. 2025 Mar;14(7):e2403476. doi: 10.1002/adhm.202403476. Epub 2025 Jan 20.
Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated. The platform is constructed employing a "macrogel/microgel/biofilm" hierarchical encapsulation strategy, with Lactobacillus casei as the model probiotic. Alginate gels, in both macro and micro forms, along with self-produced probiotic biofilms, served as encapsulating agents. Specifically, live probiotics are enclosed within alginate microspheres, embedded into an alginate bulk matrix, and cultivated to facilitate biofilm self-encasing. This multiscale confinement protected the probiotics and averted their inadvertent escape, while enabling sustained secretion, proper reservation, and localized delivery of therapeutically active probiotic metabolites, such as lactic acid. The resulting biosystem, as validated in vitro/ovo/vivo, elicited well-balanced antibacterial activities and biological compatibility, alongside prominent pro-healing, vasculogenic and anti-inflammatory potencies, thus accelerating the regeneration of infected full-thickness excisional wounds in diabetic mice. Such multiple encapsulation-engineered "all-in-one" probiotic delivery tactic may shed new light on the safe and efficient adoption of live bacteria for treating chronic infectious diseases.
感染性糖尿病伤口对当代医疗保健构成了严峻威胁。难治性生物膜、持续性炎症和血管生成迟缓共同作用,可导致伤口不愈合和危及生命的并发症,因此需要先进的治疗方法,以实现抗感染效果、良好的生物相容性、促进修复的免疫调节和血管生成再生。在此,采用新兴的“活细菌疗法”模式,展示了一种设计型益生菌水凝胶伤口敷料平台。该平台采用“大凝胶/微凝胶/生物膜”分级封装策略构建,以干酪乳杆菌作为模式益生菌。大尺寸和微尺寸的海藻酸盐凝胶以及益生菌自身产生的生物膜用作封装剂。具体而言,活的益生菌被包裹在海藻酸盐微球中,嵌入海藻酸盐块状基质中,并进行培养以促进生物膜的自我包裹。这种多尺度限制保护了益生菌,避免其意外逃逸,同时能够持续分泌、妥善保留并局部递送具有治疗活性的益生菌代谢产物,如乳酸。体外/卵内/体内验证结果表明,所得生物系统具有平衡的抗菌活性和生物相容性,同时具有显著的促进愈合、血管生成和抗炎能力,从而加速了糖尿病小鼠感染性全层切除伤口的再生。这种多重封装工程化的“一体化”益生菌递送策略可能为安全有效地利用活细菌治疗慢性感染性疾病提供新的思路。