Wang Liu, Guo Jiahui, Qi Qi, Li Xiaotong, Ge Yuanmeng, Li Haoyi, Chao Yunfeng, Du Jiang, Cui Xinwei
Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Nanomicro Lett. 2025 Jan 20;17(1):111. doi: 10.1007/s40820-024-01637-5.
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators. It is found that the adsorbed Li ions connect electron-donating sGDY@MXene to TFSI, facilitating interfacial charge transfer for TFSI decomposition. However, this does not capture the entire picture. The sGDY@MXene also renders the adsorbed Li ions with high mobility, enabling them to reach optimal reaction sites and expedite their coordination processes with O on O=S=O and F on the broken -CF, facilitating bond cleavage. In contrast, immobilized Li ions on the more lithiophilic pristine MXene retard these cleavage processes. Consequently, the decomposition reaction is accelerated on sGDY@MXene. This work highlights the dedicate balance between lithiophilicity and Li-ion mobility in effectively promoting a LiF-rich SEI for the long-term stability of LMBs.
构建富含LiF的阴离子衍生固体电解质界面(SEI)被认为是解决锂金属电池(LMBs)安全性差和循环性能不佳问题最有前景的策略。在此,我们发现,不是表面极性基团直接向双(三氟甲磺酰)亚胺(TFSI)进行电子转移以诱导富含LiF的SEI,而是偶极诱导的氟化阴离子分解反应始于Li离子的吸附,并且高度依赖于它们在极性表面上的迁移率。为了证明这一点,成功制备了一种MXene上的单层石墨炔(sGDY@MXene)异质结构并将其集成到聚丙烯隔膜中。研究发现,吸附的Li离子将供电子的sGDY@MXene与TFSI相连,促进TFSI分解的界面电荷转移。然而,情况并非如此简单。sGDY@MXene还使吸附的Li离子具有高迁移率,使其能够到达最佳反应位点并加速它们与O=S=O上的O以及断裂的-CF上的F的配位过程,促进键断裂。相比之下,固定在亲锂性更强的原始MXene上的Li离子会阻碍这些断裂过程。因此,sGDY@MXene上的分解反应加速。这项工作强调了在有效促进富含LiF的SEI以实现LMBs长期稳定性方面,亲锂性和Li离子迁移率之间的精确平衡。