Zhang Haitian, Guo Yongqiang, Zhao Yizhi, Zhu Qiuyu, He Mukun, Guo Hua, Shi Xuetao, Ruan Kunpeng, Kong Jie, Gu Junwei
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202500173. doi: 10.1002/anie.202500173. Epub 2025 Jan 28.
The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity. This work proposes a new strategy to efficiently introduce mesogens onto PDMS through ring-opening copolymerization of liquid crystal cyclosiloxane and octamethylcyclotetrasiloxane, enhancing the grafting density. The relationship between the grafting density and intrinsic thermal conductivity of liquid crystal polydimethylsiloxane (LC-PDMS) is investigated by nonequilibrium molecular dynamics (NEMD) simulations. Based on the simulation results, LC-PDMS with enhanced intrinsic thermal conductivity is synthesized. When the grafting density of mesogens reaches 77.4 %, its intrinsic thermal conductivity coefficient (λ) increases to 0.56 W/(m⋅K), showing a 180.0 % improvement over ordinary PDMS (0.20 W/(m⋅K)). The LC-PDMS also exhibits the low dielectric constant (ϵ, 2.69), low dielectric loss tangent (tanδ, 0.0027), high insulation performance (volume resistivity, 3.51×10 Ω⋅cm), excellent thermal stability (heat resistance index, 217.8 °C) and excellent hydrophobicity (water contact angle, 137.4°), fulfilling the comprehensive requirements of advanced thermal interface materials.
电子设备功率的不断提高及其集成度的不断增强加剧了严重的热量积累,推动了对热界面材料(如聚二甲基硅氧烷(PDMS))中更高本征热导率的需求。将介晶基团接枝到PDMS上可以提高其本征热导率。然而,PDMS链的高稳定性限制了介晶基团的接枝密度,从而限制了热导率的提高。这项工作提出了一种新策略,通过液晶环硅氧烷和八甲基环四硅氧烷的开环共聚,将介晶基团高效地引入到PDMS上,提高接枝密度。通过非平衡分子动力学(NEMD)模拟研究了液晶聚二甲基硅氧烷(LC-PDMS)的接枝密度与本征热导率之间的关系。基于模拟结果,合成了具有增强本征热导率的LC-PDMS。当介晶基团的接枝密度达到77.4%时,其本征热导率系数(λ)增加到0.56 W/(m⋅K),比普通PDMS(0.20 W/(m⋅K))提高了180.0%。LC-PDMS还具有低介电常数(ϵ,2.69)、低介电损耗正切(tanδ,0.0027)、高绝缘性能(体积电阻率,3.51×10 Ω⋅cm)、优异的热稳定性(耐热指数,217.8 °C)和优异的疏水性(水接触角,137.4°),满足了先进热界面材料的综合要求。