Suppr超能文献

通过瓶子利用非侵入性光谱技术及机器学习建模来加强啤酒的认证、质量和控制评估。

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

作者信息

Harris Natalie, Gonzalez Viejo Claudia, Zhang Jiaying, Pang Alexis, Hernandez-Brenes Carmen, Fuentes Sigfredo

机构信息

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo Leon, México.

出版信息

J Food Sci. 2025 Jan;90(1):e17670. doi: 10.1111/1750-3841.17670.

Abstract

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used. To obtain the ground-truth data, a quantitative descriptive analysis was conducted with 11 trained panelists to evaluate the intensity of 16 sensory descriptors, and volatile aromatic compounds were analyzed using gas chromatography-mass spectroscopy (GC-MS). The ML models were developed using artificial neural networks with NIR absorbance values as inputs to predict (i) type of fermentation (Model 1), (ii) intensity of 16 sensory descriptors (Model 2), and (iii) peak area of volatile aromatic compounds (Model 3). All models resulted in high overall accuracy (Model 1: 99%; Model 2: R = 0.92; Model 3: R = 0.94), and model deployment for new beer samples showed high performance (Model 1: 95%; Model 2: R = 0.83). This method enables brewers and retailers to analyze beers without opening bottles, preventing quality assurance issues, fraud, and provenance concerns. Further model training with new targets could assess additional quality traits like physicochemical parameters and origin. PRACTICAL APPLICATION: Near-infrared spectroscopy coupled with ML modeling is a novel method for assessing beer quality and authentication through the bottle. It serves as a rapid, accurate tool for predicting sensory and aroma profiles without opening the bottle. Additionally, it monitors quality traits during transport and storage.

摘要

通过假冒和掺假对酒精饮料进行欺诈的行为日益增多,给企业带来了重大经济影响。本研究旨在开发一种方法,通过瓶子利用近红外(NIR)光谱(1596 - 2396 nm),并结合机器学习(ML)建模进行啤酒真伪鉴定、品质特征分析和质量控制评估。在本研究中,使用了来自不同品牌、风格以及三种发酵类型的25种市售啤酒。为了获取真实数据,对11名经过培训的评判员进行了定量描述分析,以评估16种感官描述词的强度,并使用气相色谱 - 质谱联用仪(GC - MS)分析挥发性芳香化合物。使用以近红外吸光度值为输入的人工神经网络开发了ML模型,以预测(i)发酵类型(模型1)、(ii)16种感官描述词的强度(模型2)以及(iii)挥发性芳香化合物的峰面积(模型3)。所有模型均具有较高的总体准确率(模型1:99%;模型2:R = 0.92;模型3:R = 0.94),并且对新啤酒样品的模型部署显示出高性能(模型1:95%;模型2:R = 0.83)。这种方法使酿酒商和零售商能够在不打开瓶子的情况下分析啤酒,避免了质量保证问题、欺诈行为和产地相关问题。使用新目标进行进一步的模型训练可以评估诸如理化参数和产地等其他品质特征。实际应用:近红外光谱结合ML建模是一种通过瓶子评估啤酒质量和真伪鉴定的新方法。它是一种快速、准确的工具,无需打开瓶子即可预测感官和香气特征。此外,它还能在运输和储存过程中监测品质特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7efc/11745409/1e0dcb2decde/JFDS-90-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验