Suppr超能文献

基于起泡性和化学成分,利用计算机视觉算法、近红外光谱和机器学习算法对啤酒质量进行评估。

Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms.

作者信息

Gonzalez Viejo Claudia, Fuentes Sigfredo, Torrico Damir, Howell Kate, Dunshea Frank R

机构信息

University of Melbourne, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Victoria, Australia.

出版信息

J Sci Food Agric. 2018 Jan;98(2):618-627. doi: 10.1002/jsfa.8506. Epub 2017 Aug 8.

Abstract

BACKGROUND

Beer quality is mainly defined by its colour, foamability and foam stability, which are influenced by the chemical composition of the product such as proteins, carbohydrates, pH and alcohol. Traditional methods to assess specific chemical compounds are usually time-consuming and costly. This study used rapid methods to evaluate 15 foam and colour-related parameters using a robotic pourer (RoboBEER) and chemical fingerprinting using near infrared spectroscopy (NIR) from six replicates of 21 beers from three types of fermentation. Results from NIR were used to create partial least squares regression (PLS) and artificial neural networks (ANN) models to predict four chemometrics such as pH, alcohol, Brix and maximum volume of foam.

RESULTS

The ANN method was able to create more accurate models (R  = 0.95) compared to PLS. Principal components analysis using RoboBEER parameters and NIR overtones related to protein explained 67% of total data variability. Additionally, a sub-space discriminant model using the absorbance values from NIR wavelengths resulted in the successful classification of 85% of beers according to fermentation type.

CONCLUSION

The method proposed showed to be a rapid system based on NIR spectroscopy and RoboBEER outputs of foamability that can be used to infer the quality, production method and chemical parameters of beer with minimal laboratory equipment. © 2017 Society of Chemical Industry.

摘要

背景

啤酒质量主要由其颜色、起泡性和泡沫稳定性决定,这些特性受产品化学成分的影响,如蛋白质、碳水化合物、pH值和酒精含量。评估特定化合物的传统方法通常既耗时又昂贵。本研究采用快速方法,使用机器人倒酒器(RoboBEER)评估15个与泡沫和颜色相关的参数,并利用近红外光谱(NIR)对来自三种发酵类型的21种啤酒的六个重复样本进行化学指纹识别。近红外光谱的结果用于创建偏最小二乘回归(PLS)和人工神经网络(ANN)模型,以预测pH值、酒精含量、白利糖度和最大泡沫体积这四个化学计量学指标。

结果

与偏最小二乘回归相比,人工神经网络方法能够创建更准确的模型(R = 0.95)。使用RoboBEER参数和与蛋白质相关的近红外泛音进行主成分分析,解释了67%的数据总变异性。此外,使用近红外波长吸光度值的子空间判别模型成功地根据发酵类型对85%的啤酒进行了分类。

结论

所提出的方法显示出是一种基于近红外光谱和RoboBEER起泡性输出的快速系统,可用于在使用最少实验室设备的情况下推断啤酒的质量、生产方法和化学参数。© 2017化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验