Suppr超能文献

正交晶系FeNbO的(010)和(111)表面上氢的解离与水的形成

Dissociation of Hydrogen and Formation of Water at the (010) and (111) Surfaces of Orthorhombic FeNbO.

作者信息

Wang Xingyu, Santos-Carballal David, de Leeuw Nora H

机构信息

School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom.

Department of Earth Sciences, Utrecht University, 3584 CB, Utrecht, The Netherlands.

出版信息

Chemphyschem. 2025 May 5;26(9):e202400781. doi: 10.1002/cphc.202400781. Epub 2025 Apr 3.

Abstract

The orthorhombic structure of FeNbO, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. In this study, we have used calculations based on the density functional theory with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+U-D2) to explore the adsorption and dissociation of H molecules and the formation reaction of water at the (010) and (111) surfaces. We have generated pristine surfaces with random distributions of cations from a 2×2×2 quasi-random orthorhombic bulk structure. Specifically, we have considered various terminations for the (010) and (111) surfaces with different ratios of Fe and Nb cations in the exposed layers. The top and sub-surface layers of the (010) surface move in opposite directions after relaxation, whereas the relaxed layers of the (111) surface shift outward by no more than 2.5 %. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material. We found that the hydrogen molecule prefers to dissociate at the O bridge sites of the (010) and (111) surfaces, especially where these are coordinated to Fe cations, thereby forming two hydroxyl groups. We have investigated the water formation reaction and found that the energy barriers for migration of the H ions are generally lower for the Fe/Nb-O sites than for the O-O site. Overall, our simulations predict that after dissociation, the H atoms tend to remain stable in the form of O-H groups, whereas a larger barrier needs to be overcome to achieve the formation of water. Future work will focus on potential surface modifications to reduce further the barrier of migration of the dissociated H ions, especially from the oxygen bridge sites.

摘要

FeNbO的正交结构中,铁(Fe)和铌(Nb)阳离子随机分布在八面体4c位上,作为固体氧化物燃料电池的阳极材料显示出了极好的前景。在本研究中,我们使用了基于密度泛函理论并结合哈伯德哈密顿量和长程色散校正(DFT+U-D2)的计算方法,来探究H分子在(010)和(111)表面的吸附和解离以及水的生成反应。我们从2×2×2准随机正交体结构生成了具有阳离子随机分布的原始表面。具体而言,我们考虑了(010)和(111)表面不同的终止方式,其暴露层中Fe和Nb阳离子的比例不同。(010)表面的顶层和次表面层在弛豫后向相反方向移动,而(111)表面的弛豫层向外移动不超过2.5%。表面性质的模拟证实,与体材料相比,带隙显著减小。我们发现氢分子更倾向于在(010)和(111)表面的O桥位解离,尤其是与Fe阳离子配位的O桥位,从而形成两个羟基。我们研究了水的生成反应,发现Fe/Nb-O位上H离子迁移的能垒通常比O-O位的低。总体而言,我们的模拟预测,解离后,H原子倾向于以O-H基团的形式保持稳定,而要实现水的生成则需要克服更大的能垒。未来的工作将集中在潜在的表面改性上,以进一步降低解离的H离子迁移的能垒,特别是从氧桥位迁移的能垒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e7/12058236/4189fd27c1f5/CPHC-26-e202400781-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验