Suppr超能文献

In silico toxicology investigation of μ-conotoxin KIIIA on human Na channel Na1.2.

作者信息

Ou Minrui, Xu Suyan, Huang Zhixuan, Xu Xiaoping

机构信息

College of Chemistry, Fuzhou University, Fuzhou 350116, China.

College of Chemistry, Fuzhou University, Fuzhou 350116, China.

出版信息

Int J Biol Macromol. 2025 Apr;298:140092. doi: 10.1016/j.ijbiomac.2025.140092. Epub 2025 Jan 18.

Abstract

Conotoxins(CTXs) can specifically act on multiple ion channels, which are crucial for the development of neurobiology and novel targeted drug development. At present, >10,000 kinds of CTXs have been sequenced, it would be extremely laborious to conduct experiments for each. μ-CTX KIIIA is a type of substance that can selectively recognize voltage-gated sodium ion channels. This article constructs four derivatives of KIIIA and predicts their 3D structures; afterwards, their molecular orbital arrangements and physicochemical properties were calculated using DFT; then, predicted their toxicokinetic parameters such as absorption, distribution, metabolism, excretion (ADME) and toxicity (T) through Machine Learning (ML); finally, molecular docking and molecular dynamics are used to investigate the interaction modes and binding affinity. The results indicate that the toxicity of KIIIA and its derivatives (KIIIA-1 -KIIIA-4) to the human body is mainly concentrated in the liver and respiratory tract. Among four derivatives, KIIIA-2 (5 Ser → Arg) has better toxicokinetics properties and its binding energy to Na1.2 is -65.32 kcal/mol, which is higher than that of wild type(-32.13 kcal/mol). This study indicate that computational toxicology can facilitate the druggability research of CTXs, and KIIIA-2 can be developed as a potential antiepileptic drug.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验