Abirami S, Ramesh K, Lalitha VaniSree K
Department of Computer Science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu, India.
Department of Computer Science and Engineering Koneru Lakshmaiah Education Foundation, Vijayawada, India.
NMR Biomed. 2025 Feb;38(2):e5307. doi: 10.1002/nbm.5307.
The uncommon growth of cells in the brain is termed as brain tumor. To identify chronic nerve problems, like strokes, brain tumors, multiple sclerosis, and dementia, brain magnetic resonance imaging (MRI) is normally utilized. Identifying the tumor on early stage can improve the patient's survival rate. However, it is difficult to identify the exact tumor region with less computational complexity. Also, the tumors can vary significantly in shape, size, and appearance, which complicates the task of correctly classifying tumor types and detecting subtle pixel changes over time. Hence, an Adam kookaburra optimization-based Shepard convolutional neural network (AKO-based Shepard CNN) is established in this study for the classification and pixel change detection of brain tumor. The Adam kookaburra optimization (AKO) is established by integrating the kookaburra optimization algorithm (KOA) and Adam. Here, the pre- and post-operative MRIs are pre-processed and then segmented by U-Net++. The tuning of U-Net++ is done by the bald Border collie firefly optimization algorithm (BBCFO). The bald eagle search (BES), firefly algorithm (FA), and Border collie optimization (BCO) are combined to form the BBCFO. The next operation is the feature extraction and the classification is conducted at last using ShCNN. The AKO is utilized to tune the ShCNN for obtaining effective classification results. Unlike conventional optimization algorithms, AKO offers faster convergence and higher accuracy in classification. The highest negative predictive value (NPV), true negative rate (TNR), true positive rate (TPR), positive predictive value (PPV), and accuracy produced by the AKO-based ShCNN are 89.91%, 92.26%, 93.78%, and 93.60%, respectively, using Brain Images of Tumors for Evaluation database (BITE).
大脑中细胞的异常生长被称为脑肿瘤。为了识别慢性神经问题,如中风、脑肿瘤、多发性硬化症和痴呆症,通常会使用脑磁共振成像(MRI)。在早期识别肿瘤可以提高患者的生存率。然而,以较低的计算复杂度准确识别肿瘤区域是困难的。此外,肿瘤在形状、大小和外观上可能有很大差异,这使得正确分类肿瘤类型和检测随时间变化的细微像素变化的任务变得复杂。因此,本研究建立了一种基于笑翠鸟优化算法的谢泼德卷积神经网络(AKO-based Shepard CNN)用于脑肿瘤的分类和像素变化检测。笑翠鸟优化算法(AKO)是通过将笑翠鸟优化算法(KOA)和亚当优化算法(Adam)相结合而建立的。在这里,术前和术后的MRI先进行预处理,然后由U-Net++进行分割。U-Net++的调优由秃鹰边境牧羊犬萤火虫优化算法(BBCFO)完成。秃鹰搜索(BES)、萤火虫算法(FA)和边境牧羊犬优化算法(BCO)相结合形成了BBCFO。接下来的操作是特征提取,最后使用ShCNN进行分类。AKO用于调整ShCNN以获得有效的分类结果。与传统优化算法不同,AKO在分类中提供更快的收敛速度和更高的准确率。使用用于评估的脑肿瘤图像数据库(BITE),基于AKO的ShCNN产生的最高阴性预测值(NPV)、真阴性率(TNR)、真阳性率(TPR)、阳性预测值(PPV)和准确率分别为89.91%、92.26%、93.78%和93.60%。