Suppr超能文献

基于组织病理学图像的子宫组织分类中采用混合特征提取的优化迁移学习

Optimized Transfer Learning With Hybrid Feature Extraction for Uterine Tissue Classification Using Histopathological Images.

作者信息

Patil Veena I, Patil Shobha R

机构信息

Research scholar, Department of Computer Science and Engineering, Basaveshwar Engineering College, Visvesvaraya Technological University, Belagavi, India.

BLDEA's V. P. Dr. P. G. Halakatti College of Engineering & Technology, Vijayapura, India.

出版信息

Microsc Res Tech. 2025 May;88(5):1582-1598. doi: 10.1002/jemt.24787. Epub 2025 Jan 27.

Abstract

Endometrial cancer, termed uterine cancer, seriously affects female reproductive organs, and the analysis of histopathological images formed a golden standard for diagnosing this cancer. Sometimes, early detection of this disease is difficult because of the limited capability of modeling complicated relationships among histopathological images and their interpretations. Moreover, many previous methods do not effectively handle the cell appearance variations. Hence, this study develops a novel classification technique called transfer learning convolution neural network with artificial bald eagle optimization (TL-CNN with ABEO) for the classification of uterine tissue. Here, preprocessing is done by the median filter, followed by image enhancement by the multiple identities representation network (MIRNet). Moreover, pelican crow search optimization (PCSO) is used for adapting weights in MIRNet, where PCSO is generated by combining the crow search algorithm (CSA) and pelican optimization algorithm (POA). Then, segmentation quality assessment (SQA) helps in tissue segmentation, and deep convolutional neural network (DCNN) helps in parameter selection that is trained by fractional PCSO (FPCSO). Furthermore, feature extraction is done and, finally, cell classification is done by TL with CNN, which is trained by the proposed ABEO algorithm. Here, ABEO is newly developed by the integration of the bald eagle search (BES) algorithm and artificial hummingbird algorithm (AHA). Furthermore, ABEO + TL-CNN achieved a high accuracy of 89.59%, a sensitivity of 90.25%, and a specificity of 89.89% by utilizing the cancer image archive dataset.

摘要

子宫内膜癌,又称子宫癌,严重影响女性生殖器官,组织病理学图像分析是诊断这种癌症的金标准。有时,由于对组织病理学图像及其解读之间复杂关系进行建模的能力有限,这种疾病的早期检测很困难。此外,许多先前的方法不能有效地处理细胞外观变化。因此,本研究开发了一种名为带人工秃鹰优化的迁移学习卷积神经网络(TL-CNN with ABEO)的新型分类技术,用于子宫组织的分类。在这里,预处理通过中值滤波器完成,随后通过多身份表示网络(MIRNet)进行图像增强。此外,鹈鹕乌鸦搜索优化(PCSO)用于调整MIRNet中的权重,其中PCSO是通过结合乌鸦搜索算法(CSA)和鹈鹕优化算法(POA)生成的。然后,分割质量评估(SQA)有助于组织分割,深度卷积神经网络(DCNN)有助于通过分数PCSO(FPCSO)训练的参数选择。此外,进行特征提取,最后通过带CNN的TL进行细胞分类,其由提出的ABEO算法训练。在这里,ABEO是通过整合秃鹰搜索(BES)算法和人工蜂鸟算法(AHA)新开发的。此外,利用癌症图像存档数据集,ABEO + TL-CNN实现了89.59%的高精度、90.25%的灵敏度和89.89%的特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验