Li Yujia, Zhao Yining, Ruocco Alfonso, Wang Mingqing, Li Bing, Akhavan Shahab
Institute for Materials Discovery, University College London, London WC1E 7JE, U.K.
Department of Chemistry, University College London, London WC1E 7JE, U.K.
ACS Appl Mater Interfaces. 2025 Jan 29;17(4):6716-6727. doi: 10.1021/acsami.4c18102. Epub 2025 Jan 20.
Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics. In this study, we present photodetectors (PDs) on a paper substrate composed of graphene and CsPbBr perovskite quantum dots (PQDs). Hybrid structures that combine PQDs with graphene offer a promising approach for PDs. These structures benefit from robust quantum confinement in PQDs alongside improved light interaction, tunable spectra, high absorption coefficients, and an enhanced photoconductive gain mechanism in graphene, all at ambient conditions. We use a microplotter for the lithographic printing of graphene, silver electrodes, and PQDs, to fabricate PDs on paper. These PDs have an external responsivity of ∼82,000 AW at 520 nm for an operating voltage ⩽1 V. The external responsivity is 3 orders of magnitude higher than state-of-the-art paper-based PDs. Under bending at L/L = 1.15 (L is the arc length and is the chord length) and after 600 bending cycles, the external responsivity is maintained up to 80%. Thus, the combination of zero- and two-dimensional materials via microplotting on a paper substrate shows promise for wearable and flexible applications.
纸张是创建灵活且环保的电子系统的理想平台。利用零维和二维材料的协同集成,它在物联网(IoT)领域展现出广泛的应用,涵盖从可穿戴电子设备到智能包装解决方案等。然而,对于没有聚合物涂层的纸张,其粗糙多孔的性质给作为电子器件的基板带来了重大挑战,并且缺乏成熟的制造方法进一步阻碍了其在可穿戴电子设备中的应用。在本研究中,我们在由石墨烯和CsPbBr钙钛矿量子点(PQD)组成的纸质基板上制备了光电探测器(PD)。将PQD与石墨烯相结合的混合结构为PD提供了一种很有前景的方法。这些结构受益于PQD中强大的量子限制以及改善的光相互作用、可调谐光谱、高吸收系数,以及石墨烯中增强的光电导增益机制,所有这些都在环境条件下实现。我们使用微绘图仪进行石墨烯、银电极和PQD的光刻印刷,以在纸张上制造PD。这些PD在520 nm波长、工作电压⩽1 V时的外部响应度约为82,000 AW。该外部响应度比现有最先进的纸质PD高3个数量级。在以L/L = 1.15(L是弧长, 是弦长)进行弯曲以及600次弯曲循环后,外部响应度仍能保持高达80%。因此,通过在纸质基板上进行微绘图将零维和二维材料相结合,在可穿戴和柔性应用方面显示出了潜力。