Goold Hugh D, Kroukamp Heinrich, Erpf Paige E, Zhao Yu, Kelso Philip, Calame Julie, Timmins John J B, Wightman Elizabeth L I, Peng Kai, Carpenter Alexander C, Llorente Briardo, Hawthorne Carmen, Clay Samuel, van Wyk Niël, Daniel Elizabeth L, Harrison Fergus, Meier Felix, Willows Robert D, Cai Yizhi, Walker Roy S K, Xu Xin, Espinosa Monica I, Stracquadanio Giovanni, Bader Joel S, Mitchell Leslie A, Boeke Jef D, Williams Thomas C, Paulsen Ian T, Pretorius Isak S
New South Wales Department of Primary Industries, Elizabeth Macarthur Agriculture Institute, Advanced Gene Technology Centre, Woodbridge Road, Menangle, NSW, 2568, Australia.
School of Natural Sciences, and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
Nat Commun. 2025 Jan 20;16(1):841. doi: 10.1038/s41467-024-55318-3.
The Sc2.0 global consortium to design and construct a synthetic genome based on the Saccharomyces cerevisiae genome commenced in 2006, comprising 16 synthetic chromosomes and a new-to-nature tRNA neochromosome. In this paper we describe assembly and debugging of the 902,994-bp synthetic Saccharomyces cerevisiae chromosome synXVI of the Sc2.0 project. Application of the CRISPR D-BUGS protocol identified defective loci, which were modified to improve sporulation and recover wild-type like growth when grown on glycerol as a sole carbon source when grown at 37˚C. LoxPsym sites inserted downstream of dubious open reading frames impacted the 5' UTR of genes required for optimal growth and were identified as a systematic cause of defective growth. Based on lessons learned from analysis of Sc2.0 defects and synXVI, an in-silico redesign of the synXVI chromosome was performed, which can be used as a blueprint for future synthetic yeast genome designs. The in-silico redesign of synXVI includes reduced PCR tag frequency, modified chunk and megachunk termini, and adjustments to allocation of loxPsym sites and TAA stop codons to dubious ORFs. This redesign provides a roadmap into applications of Sc2.0 strategies in non-yeast organisms.
2006年启动了Sc2.0全球联盟,旨在基于酿酒酵母基因组设计并构建一个合成基因组,该联盟包括16条合成染色体和一条自然界中全新的tRNA新染色体。在本文中,我们描述了Sc2.0项目中902,994碱基对的合成酿酒酵母染色体synXVI的组装与调试。应用CRISPR D-BUGS方案识别出有缺陷的位点,并对其进行了修改,以改善孢子形成,并在37˚C下以甘油作为唯一碳源生长时恢复类似野生型的生长。插入可疑开放阅读框下游的LoxPsym位点影响了最佳生长所需基因的5'UTR,并被确定为生长缺陷的一个系统性原因。基于从Sc2.0缺陷和synXVI分析中吸取的经验教训,对synXVI染色体进行了计算机模拟重新设计,这可作为未来合成酵母基因组设计的蓝图。synXVI的计算机模拟重新设计包括降低PCR标签频率、修改片段和大片段末端,以及调整LoxPsym位点和TAA终止密码子在可疑开放阅读框中的分配。这一重新设计为Sc2.0策略在非酵母生物中的应用提供了路线图。