Suppr超能文献

带符号网络预测模型中的三元平衡与网络演化

Triadic balance and network evolution in predictive models of signed networks.

作者信息

Lee Hsuan-Wei, Lu Pei-Chin, Sha Hsiang-Chuan, Huang Hsini

机构信息

Lehigh University, Bethlehem, USA.

University of Chicago, Chicago, USA.

出版信息

Sci Rep. 2025 Jan 20;15(1):2544. doi: 10.1038/s41598-024-85078-5.

Abstract

This paper introduces a novel approach for identifying dynamic triadic transformation processes, applied to five networks: three undirected and two directed. Our method significantly enhances the prediction accuracy of network ties. While balance theory offers insights into evolving patterns of triadic structures, its effects on overall network dynamics remain underexplored. Existing research often neglects the interaction between micro-level balancing mechanisms and overall network behavior. To bridge this gap, we develop a method for detecting dynamic triadic structures in signed networks, categorizing triangle transformations over two consecutive periods into formation and breakage. We analyze the impact of these structures on temporal network evolution by incorporating them into exponential random graph models across five networks of varying size, density, and directionality. To address the complexity of multi-layer networks derived from signed networks, we modify the temporal exponential random graph model framework. Our method significantly improves out-of-sample prediction accuracy for network ties, with additional predictive power from incorporating negative network information. These findings highlight the importance of considering the triadic transformation processes of balance triangles in studying temporal networks, validated across diverse datasets, warranting further research.

摘要

本文介绍了一种用于识别动态三元组变换过程的新颖方法,并将其应用于五个网络:三个无向网络和两个有向网络。我们的方法显著提高了网络连接的预测准确性。虽然平衡理论为三元组结构的演化模式提供了见解,但其对整体网络动态的影响仍未得到充分探索。现有研究往往忽视了微观层面平衡机制与整体网络行为之间的相互作用。为了弥补这一差距,我们开发了一种用于检测带符号网络中动态三元组结构的方法,将两个连续时期内三角形的变换分类为形成和断裂。我们通过将这些结构纳入不同规模、密度和方向性的五个网络的指数随机图模型中,分析它们对时间网络演化的影响。为了解决由带符号网络派生的多层网络的复杂性,我们修改了时间指数随机图模型框架。我们的方法显著提高了网络连接的样本外预测准确性,通过纳入负网络信息还具有额外的预测能力。这些发现突出了在研究时间网络时考虑平衡三角形的三元组变换过程的重要性,在不同数据集上得到了验证,值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce5/11746983/cf1a7e40842f/41598_2024_85078_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验