Lee Hsuan-Wei, Malik Nishant, Shi Feng, Mucha Peter J
Institute of Sociology, Academia Sinica, Taipei 115, Taiwan.
School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA.
Phys Rev E. 2019 Jun;99(6-1):062301. doi: 10.1103/PhysRevE.99.062301.
Even though transitivity is a central structural feature of social networks, its influence on epidemic spread on coevolving networks has remained relatively unexplored. Here we introduce and study an adaptive susceptible-infected-susceptible (SIS) epidemic model wherein the infection and network coevolve with nontrivial probability to close triangles during edge rewiring, leading to substantial reinforcement of network transitivity. This model provides an opportunity to study the role of transitivity in altering the SIS dynamics on a coevolving network. Using numerical simulations and approximate master equations (AMEs), we identify and examine a rich set of dynamical features in the model. In many cases, AMEs including transitivity reinforcement provide accurate predictions of stationary-state disease prevalence and network degree distributions. Furthermore, for some parameter settings, the AMEs accurately trace the temporal evolution of the system. We show that higher transitivity reinforcement in the model leads to lower levels of infective individuals in the population, when closing a triangle is the dominant rewiring mechanism. These methods and results may be useful in developing ideas and modeling strategies for controlling SIS-type epidemics.
尽管传递性是社会网络的核心结构特征,但其对共同演化网络上流行病传播的影响仍相对未被探索。在此,我们引入并研究一种自适应易感-感染-易感(SIS)流行病模型,其中感染和网络在边重连过程中以非平凡概率共同演化以闭合三角形,从而导致网络传递性显著增强。该模型为研究传递性在改变共同演化网络上的SIS动态中的作用提供了一个契机。通过数值模拟和近似主方程(AMEs),我们识别并研究了该模型中丰富的一组动力学特征。在许多情况下,包括传递性增强的AMEs能准确预测稳态疾病患病率和网络度分布。此外,对于某些参数设置,AMEs能准确追踪系统的时间演化。我们表明,当闭合三角形是主要的重连机制时,模型中更高的传递性增强会导致人群中感染个体水平降低。这些方法和结果可能有助于为控制SIS型流行病开发思路和建模策略。