Suppr超能文献

基于幅度拉伸变换的架空电力线创新分割技术。

Innovative segmentation technique for aerial power lines via amplitude stretching transform.

作者信息

Xu Pengfei, Sulaiman Nor Anis Asma, Ding Yafei, Zhao Jiangwei

机构信息

Henan International Joint Laboratory of Machine Vision and Intelligent Systems, Department of Information Engineering, Pingdingshan University, Pingdingshan, 467000, Henan, China.

Center of Sustainable in Software Engineering, Faculty of Engineering, Built Environment & Information Technology, SEGI University, Kota Damansara, Malaysia.

出版信息

Sci Rep. 2025 Jan 20;15(1):2468. doi: 10.1038/s41598-025-86753-x.

Abstract

Accurate segmentation of power line targets helps quickly locate faults, evaluate line conditions, and provides key image data support and analysis for the safe and stable operation of the power system.The aerial power line in segmentation due to the target is small, and the imaging reflected energy is weak, so the Unmanned Aerial Vehicle (UAV) aerial power line image is very susceptible to the interference of the environment line elements and noise, resulting in the detection of the power line target in the image of the defective, intermittent, straight line interferences and other low accuracy and real-time efficiency is not high. For this reason, this paper designs a pure amplitude stretching kernel function to form a Fourier amplitude vector field and uses this amplitude vector field to implement the stretching transformation of the amplitude field of the aerial power line image, so that the angular field after the Fourier inverse transformation can better react to the spatial domain line targets, and finally, after the Relative Total Variation (RTV) processing, the power line can be well detected. The proposed algorithm is compared with the main power line segmentation algorithms, such as Region Convolutional Neural Networks(R-CNN) and Phase Stretch Transform(PST). The average values of evaluation indicators P, M and M of the image segmentation results of the proposed algorithm reach 0.96, 0.96 and 0.95 respectively, and the average time lag of detection is less than 0.2s, indicating that the accuracy and real-time performance of the segmentation results of the proposed algorithm are significantly better than those of the above algorithms.

摘要

准确分割电力线目标有助于快速定位故障、评估线路状况,并为电力系统的安全稳定运行提供关键图像数据支持与分析。由于分割中的架空电力线目标较小,成像反射能量较弱,因此无人机航拍电力线图像极易受到环境线路元素和噪声的干扰,导致图像中电力线目标检测出现缺陷、间断、直线干扰等情况,准确率较低且实时效率不高。为此,本文设计了一种纯幅度拉伸核函数,形成傅里叶幅度矢量场,并利用该幅度矢量场对架空电力线图像的幅度场进行拉伸变换,使傅里叶逆变换后的角场能更好地反映空间域线路目标,最后经过相对全变差(RTV)处理,可很好地检测出电力线。将所提算法与区域卷积神经网络(R-CNN)、相位拉伸变换(PST)等主要电力线分割算法进行比较。所提算法图像分割结果的评估指标P、M和M的平均值分别达到0.96、0.96和0.95,检测平均时延小于0.2s,表明所提算法分割结果的准确率和实时性能明显优于上述算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/947e/11747244/130ce1818774/41598_2025_86753_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验