Shi Min, Luo Yan, Tian Yu, Shen Lucy Q, Zebardast Nazlee, Eslami Mohammad, Kazeminasab Saber, Boland Michael V, Friedman David S, Pasquale Louis R, Wang Mengyu
Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
NPJ Digit Med. 2025 Jan 20;8(1):46. doi: 10.1038/s41746-025-01432-5.
Glaucoma is the leading cause of irreversible blindness globally. Research indicates a disproportionate impact of glaucoma on racial and ethnic minorities. Existing deep learning models for glaucoma detection might not achieve equitable performance across diverse identity groups. We developed fair identify normalization (FIN) module to equalize the feature importance across different identity groups to improve model performance equity. The optical coherence tomography (OCT) measurements were used to categorize patients into glaucoma and non-glaucoma. The equity-scaled area under the receiver operating characteristic curve (ES-AUC) was adopted to quantify model performance equity. With FIN for racial groups, the overall AUC and ES-AUC increased from 0.82 to 0.85 and 0.77 to 0.81, respectively, with the AUC for Blacks increasing from 0.77 to 0.82. With FIN for ethnic groups, the overall AUC and ES-AUC increased from 0.82 to 0.84 and 0.77 to 0.80, respectively, with the AUC for Hispanics increasing from 0.75 to 0.79.
青光眼是全球不可逆性失明的主要原因。研究表明,青光眼对少数族裔的影响尤为严重。现有的用于青光眼检测的深度学习模型可能无法在不同身份群体中实现公平的性能表现。我们开发了公平身份归一化(FIN)模块,以均衡不同身份群体之间的特征重要性,从而提高模型性能的公平性。利用光学相干断层扫描(OCT)测量结果将患者分为青光眼患者和非青光眼患者。采用公平尺度下的受试者工作特征曲线下面积(ES-AUC)来量化模型性能的公平性。对于种族群体,使用FIN后,总体AUC和ES-AUC分别从0.82提高到0.85以及从0.77提高到0.81,黑人的AUC从0.77提高到0.82。对于族裔群体,使用FIN后,总体AUC和ES-AUC分别从0.82提高到0.84以及从0.77提高到0.80,西班牙裔的AUC从0.75提高到0.79。