Suppr超能文献

用于青光眼筛查的公平人工智能与公平身份归一化

Equitable artificial intelligence for glaucoma screening with fair identity normalization.

作者信息

Shi Min, Luo Yan, Tian Yu, Shen Lucy Q, Zebardast Nazlee, Eslami Mohammad, Kazeminasab Saber, Boland Michael V, Friedman David S, Pasquale Louis R, Wang Mengyu

机构信息

Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.

出版信息

NPJ Digit Med. 2025 Jan 20;8(1):46. doi: 10.1038/s41746-025-01432-5.

Abstract

Glaucoma is the leading cause of irreversible blindness globally. Research indicates a disproportionate impact of glaucoma on racial and ethnic minorities. Existing deep learning models for glaucoma detection might not achieve equitable performance across diverse identity groups. We developed fair identify normalization (FIN) module to equalize the feature importance across different identity groups to improve model performance equity. The optical coherence tomography (OCT) measurements were used to categorize patients into glaucoma and non-glaucoma. The equity-scaled area under the receiver operating characteristic curve (ES-AUC) was adopted to quantify model performance equity. With FIN for racial groups, the overall AUC and ES-AUC increased from 0.82 to 0.85 and 0.77 to 0.81, respectively, with the AUC for Blacks increasing from 0.77 to 0.82. With FIN for ethnic groups, the overall AUC and ES-AUC increased from 0.82 to 0.84 and 0.77 to 0.80, respectively, with the AUC for Hispanics increasing from 0.75 to 0.79.

摘要

青光眼是全球不可逆性失明的主要原因。研究表明,青光眼对少数族裔的影响尤为严重。现有的用于青光眼检测的深度学习模型可能无法在不同身份群体中实现公平的性能表现。我们开发了公平身份归一化(FIN)模块,以均衡不同身份群体之间的特征重要性,从而提高模型性能的公平性。利用光学相干断层扫描(OCT)测量结果将患者分为青光眼患者和非青光眼患者。采用公平尺度下的受试者工作特征曲线下面积(ES-AUC)来量化模型性能的公平性。对于种族群体,使用FIN后,总体AUC和ES-AUC分别从0.82提高到0.85以及从0.77提高到0.81,黑人的AUC从0.77提高到0.82。对于族裔群体,使用FIN后,总体AUC和ES-AUC分别从0.82提高到0.84以及从0.77提高到0.80,西班牙裔的AUC从0.75提高到0.79。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce89/11747341/5100310f4e8d/41746_2025_1432_Fig1_HTML.jpg

相似文献

1
Equitable artificial intelligence for glaucoma screening with fair identity normalization.
NPJ Digit Med. 2025 Jan 20;8(1):46. doi: 10.1038/s41746-025-01432-5.
3
Multifaceted behavioral interventions to improve topical glaucoma therapy adherence in adults.
Cochrane Database Syst Rev. 2025 Jun 11;6(6):CD015788. doi: 10.1002/14651858.CD015788.pub2.
4
Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for Fairness Learning and Fair Identity Normalization.
IEEE Trans Med Imaging. 2024 Jul;43(7):2623-2633. doi: 10.1109/TMI.2024.3377552. Epub 2024 Jul 1.
5
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
6
Optic nerve head and fibre layer imaging for diagnosing glaucoma.
Cochrane Database Syst Rev. 2015 Nov 30;2015(11):CD008803. doi: 10.1002/14651858.CD008803.pub2.
8
Transcriptome analysis and artificial intelligence for predicting lymph node metastasis of esophageal squamous cell carcinoma.
J Thorac Dis. 2025 May 30;17(5):3283-3296. doi: 10.21037/jtd-2025-662. Epub 2025 May 28.
9
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
Cochrane Database Syst Rev. 2015 Jan 7;1(1):CD008081. doi: 10.1002/14651858.CD008081.pub3.

引用本文的文献

1
Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations.
Med Hypothesis Discov Innov Ophthalmol. 2025 May 10;14(1):255-272. doi: 10.51329/mehdiophthal1517. eCollection 2025 Spring.

本文引用的文献

2
A foundation model for generalizable disease detection from retinal images.
Nature. 2023 Oct;622(7981):156-163. doi: 10.1038/s41586-023-06555-x. Epub 2023 Sep 13.
4
Artifact-Tolerant Clustering-Guided Contrastive Embedding Learning for Ophthalmic Images in Glaucoma.
IEEE J Biomed Health Inform. 2023 Sep;27(9):4329-4340. doi: 10.1109/JBHI.2023.3288830. Epub 2023 Sep 6.
5
An adversarial training framework for mitigating algorithmic biases in clinical machine learning.
NPJ Digit Med. 2023 Mar 29;6(1):55. doi: 10.1038/s41746-023-00805-y.
8
Race and Ethnicity Differences in Disease Severity and Visual Field Progression Among Glaucoma Patients.
Am J Ophthalmol. 2022 Oct;242:69-76. doi: 10.1016/j.ajo.2022.05.023. Epub 2022 May 30.
9
Policy-Driven, Multimodal Deep Learning for Predicting Visual Fields from the Optic Disc and OCT Imaging.
Ophthalmology. 2022 Jul;129(7):781-791. doi: 10.1016/j.ophtha.2022.02.017. Epub 2022 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验