IEEE J Biomed Health Inform. 2023 Sep;27(9):4329-4340. doi: 10.1109/JBHI.2023.3288830. Epub 2023 Sep 6.
Ophthalmic images, along with their derivatives like retinal nerve fiber layer (RNFL) thickness maps, play a crucial role in detecting and monitoring eye diseases such as glaucoma. For computer-aided diagnosis of eye diseases, the key technique is to automatically extract meaningful features from ophthalmic images that can reveal the biomarkers (e.g., RNFL thinning patterns) associated with functional vision loss. However, representation learning from ophthalmic images that links structural retinal damage with human vision loss is non-trivial mostly due to large anatomical variations between patients. This challenge is further amplified by the presence of image artifacts, commonly resulting from image acquisition and automated segmentation issues. In this paper, we present an artifact-tolerant unsupervised learning framework called EyeLearn for learning ophthalmic image representations in glaucoma cases. EyeLearn includes an artifact correction module to learn representations that optimally predict artifact-free images. In addition, EyeLearn adopts a clustering-guided contrastive learning strategy to explicitly capture the affinities within and between images. During training, images are dynamically organized into clusters to form contrastive samples, which encourage learning similar or dissimilar representations for images in the same or different clusters, respectively. To evaluate EyeLearn, we use the learned representations for visual field prediction and glaucoma detection with a real-world dataset of glaucoma patient ophthalmic images. Extensive experiments and comparisons with state-of-the-art methods confirm the effectiveness of EyeLearn in learning optimal feature representations from ophthalmic images.
眼科图像及其衍生物,如视网膜神经纤维层(RNFL)厚度图,在检测和监测青光眼等眼部疾病方面发挥着至关重要的作用。对于眼部疾病的计算机辅助诊断,关键技术是从眼科图像中自动提取有意义的特征,这些特征可以揭示与功能视力丧失相关的生物标志物(例如,RNFL 变薄模式)。然而,由于患者之间存在较大的解剖结构差异,从与结构视网膜损伤相关联的眼科图像中进行表示学习以揭示与人类视力丧失相关联的生物标志物是具有挑战性的。图像伪影的存在进一步加剧了这一挑战,这些伪影通常是由于图像采集和自动分割问题引起的。在本文中,我们提出了一种名为 EyeLearn 的抗伪影无监督学习框架,用于在青光眼病例中学习眼科图像表示。EyeLearn 包括一个伪影校正模块,用于学习能够最佳预测无伪影图像的表示。此外,EyeLearn 采用聚类引导的对比学习策略来显式捕捉图像内和图像之间的相似性。在训练过程中,图像会动态地组织成聚类,以形成对比样本,这分别鼓励学习同一聚类或不同聚类中图像的相似或不同表示。为了评估 EyeLearn,我们使用所学习的表示来进行视场预测和青光眼检测,使用了真实的青光眼患者眼科图像数据集。广泛的实验和与最先进方法的比较证实了 EyeLearn 在从眼科图像中学习最佳特征表示方面的有效性。