Suppr超能文献

机器学习在利用RetCam图像区分视网膜母细胞瘤与假性视网膜母细胞瘤方面显示出临床实用性。

Machine learning demonstrates clinical utility in distinguishing retinoblastoma from pseudo retinoblastoma with RetCam images.

作者信息

Cruz-Abrams Owen, Dodds Rojas Ricardo, Abramson David H

机构信息

Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, N.Y, US.

DigITs, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

出版信息

Ophthalmic Genet. 2025 Apr;46(2):180-185. doi: 10.1080/13816810.2025.2455576. Epub 2025 Jan 20.

Abstract

BACKGROUND

Retinoblastoma is diagnosed and treated without biopsy based solely on appearance (with the indirect ophthalmoscope and imaging). More than 20 benign ophthalmic disorders resemble retinoblastoma and errors in diagnosis continue to be made worldwide. A better noninvasive method for distinguishing retinoblastoma from pseudo retinoblastoma is needed.

METHODS

RetCam imaging of retinoblastoma and pseudo retinoblastoma from the largest retinoblastoma center in the U.S. (Memorial Sloan Kettering Cancer Center, New York, NY) were used for this study. We used several neural networks (ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152, and a Vision Image Transformer, or VIT), using 80% of images for training, 10% for validation, and 10% for testing.

RESULTS

Two thousand eight hundred eighty-two RetCam images from patients with retinoblastoma at diagnosis, 1,970 images from pseudo retinoblastoma at diagnosis, and 804 normal pediatric fundus images were included. The highest sensitivity (98.6%) was obtained with a ResNet-101 model, as were the highest accuracy and F1 scores of 97.3% and 97.7%. The highest specificity (97.0%) and precision (97.0%) was attained with a ResNet-152 model.

CONCLUSION

Our machine learning algorithm successfully distinguished retinoblastoma from retinoblastoma with high specificity and sensitivity and if implemented worldwide will prevent hundreds of eyes from incorrectly being surgically removed yearly.

摘要

背景

视网膜母细胞瘤仅根据外观(使用间接检眼镜和影像学检查)进行诊断和治疗,无需活检。超过20种良性眼科疾病与视网膜母细胞瘤相似,全球范围内仍存在诊断错误。需要一种更好的非侵入性方法来区分视网膜母细胞瘤和假性视网膜母细胞瘤。

方法

本研究使用了美国最大的视网膜母细胞瘤中心(纽约市纪念斯隆凯特琳癌症中心)的视网膜母细胞瘤和假性视网膜母细胞瘤的RetCam成像。我们使用了几种神经网络(ResNet-18、ResNet-34、ResNet-50、ResNet-101、ResNet-152和视觉图像变换器,即VIT),其中80%的图像用于训练,10%用于验证,10%用于测试。

结果

纳入了2882张视网膜母细胞瘤患者诊断时的RetCam图像、1970张假性视网膜母细胞瘤诊断时的图像以及804张正常儿童眼底图像。ResNet-101模型的灵敏度最高(98.6%),准确率和F1分数也最高,分别为97.3%和97.7%。ResNet-152模型的特异性最高(97.0%)和精确率最高(97.0%)。

结论

我们的机器学习算法成功地以高特异性和灵敏度区分了视网膜母细胞瘤和假性视网膜母细胞瘤,如果在全球范围内实施,每年将防止数百只眼睛被错误地手术摘除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1563/12392977/ba6fa6ff3dd3/nihms-2103458-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验