Suppr超能文献

人工智能和机器学习在眼肿瘤学中的应用:视网膜母细胞瘤。

Artificial intelligence and machine learning in ocular oncology: Retinoblastoma.

机构信息

Operation Eyesight Universal Institute for Eye Cancer (SK, VSV, NG, GP), L V Prasad Eye Institute, Hyderabad, Telangana, India.

Artificial Intelligence and Machine Learning, TechSophy Inc, Hyderabad, Telangana, India.

出版信息

Indian J Ophthalmol. 2023 Feb;71(2):424-430. doi: 10.4103/ijo.IJO_1393_22.

Abstract

PURPOSE

This study was done to explore the utility of artificial intelligence (AI) and machine learning in the diagnosis and grouping of intraocular retinoblastoma (iRB).

METHODS

It was a retrospective observational study using AI and Machine learning, Computer Vision (OpenCV).

RESULTS

Of 771 fundus images of 109 eyes, 181 images had no tumor and 590 images displayed iRB based on review by two independent ocular oncologists (with an interobserver variability of <1%). The sensitivity, specificity, positive predictive value, and negative predictive value of the trained AI model were 85%, 99%, 99.6%, and 67%, respectively. Of 109 eyes, the sensitivity, specificity, positive predictive value, and negative predictive value for detection of RB by AI model were 96%, 94%, 97%, and 91%, respectively. Of these, the eyes were normal (n = 31) or belonged to groupA (n=1), B (n=22), C (n=8), D (n=23),and E (n=24) RB based on review by two independent ocular oncologists (with an interobserver variability of 0%). The sensitivity, specificity, positive predictive value, and negative predictive value of the trained AI model were 100%, 100%, 100%, and 100% for group A; 82%, 20 21 98%, 90%, and 96% for group B; 63%, 99%, 83%, and 97% for group C; 78%, 98%, 90%, and 94% for group D, and 92%, 91%, 73%, and 98% for group E, respectively.

CONCLUSION

Based on our study, we conclude that the AI model for iRB is highly sensitive in the detection of RB with high specificity for the classification of iRB.

摘要

目的

本研究旨在探索人工智能(AI)和机器学习在眼内视网膜母细胞瘤(iRB)的诊断和分组中的应用。

方法

这是一项使用 AI 和机器学习、计算机视觉(OpenCV)进行的回顾性观察研究。

结果

在 109 只眼中的 771 张眼底图像中,181 张图像无肿瘤,590 张图像显示 iRB,由两位独立的眼科肿瘤学家进行审查(观察者间变异性<1%)。经训练的 AI 模型的敏感性、特异性、阳性预测值和阴性预测值分别为 85%、99%、99.6%和 67%。在 109 只眼中,AI 模型检测 RB 的敏感性、特异性、阳性预测值和阴性预测值分别为 96%、94%、97%和 91%。其中,31 只眼正常或属于 A 组(n=1)、B 组(n=22)、C 组(n=8)、D 组(n=23)和 E 组(n=24)RB,由两位独立的眼科肿瘤学家进行审查(观察者间变异性为 0%)。经训练的 AI 模型的敏感性、特异性、阳性预测值和阴性预测值分别为 100%、100%、100%和 100%用于 A 组;82%、20.98%、98%和 90%用于 B 组;63%、99%、83%和 97%用于 C 组;78%、98%、90%和 94%用于 D 组;92%、91%、73%和 98%用于 E 组。

结论

根据我们的研究,我们得出结论,用于 iRB 的 AI 模型在检测 RB 方面具有高度敏感性,并且对 iRB 的分类具有高特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef28/10228959/402bf10918a8/IJO-71-424-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验