Paeng Seol Ki, Wi Seong Dong, Chae Ho Byoung, Bae Su Bin, Phan Kieu Anh Thi, Kim Min Gab, Yun Dae-Jin, Kim Woe-Yeon, McClung C Robertson, Lee Sang Yeol
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea.
College of Pharmacy, Gyeongsang National University, Jinju 52828, South Korea.
Mol Plant. 2025 Mar 3;18(3):468-484. doi: 10.1016/j.molp.2025.01.014. Epub 2025 Jan 19.
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. In this study, we reveal that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose. In NTRC-deficient ntrc mutants, the perturbed temporal dynamics of cytosolic metabolite pools substantially attenuate the amplitude of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) mRNA oscillation while maintaining its inherent periodicity. In contrast, these fluctuations extend the period and greatly reduced the amplitude of GIGANTEA (GI). In alignment with its regulatory role, the chloroplast redox rhythm and TTFL-driven nuclear oscillators are severely disrupted in ntrc plants. The impairements are rescued by NTRC expression but not by the expression of catalytically inactive NTRC(C/S) mutant, indicating that NTRC's redox activity is essential for synchronizing intracellular circadian rhythms. In return, the canonical nuclear clock component, TIMING OF CAB EXPRESSION 1 (TOC1), regulates the diel chloroplast redox rhythm by controlling NTRC expression, as evidenced by the redox cycle of chloroplast 2-Cys peroxiredoxins. This reciprocal regulation suggests a tight coupling between chloroplast redox rhythms and nuclear oscillators. Collectively, our study has identified NTRC as a key circadian modulator, elucidating the intricate connection between the metabolite-dependent chloroplast redox rhythm and the temporal dynamics of nuclear canonical clocks.
细胞昼夜节律之间复杂的相互作用,主要表现为叶绿体氧化还原振荡(以2-半胱氨酸过氧化物酶的昼夜超氧化/还原循环为特征)与植物细胞内的核转录/翻译反馈环(TTFL)机制之间的相互作用,显示出显著的时间一致性。然而,这些昼夜节律整合背后的分子机制仍然难以捉摸。在本研究中,我们发现叶绿体氧化还原蛋白,C型NADPH依赖的硫氧还蛋白还原酶(NTRC),通过调节细胞内活性氧和蔗糖水平来调节叶绿体氧化还原节律和核生物钟的整合。在NTRC缺陷的ntrc突变体中,胞质代谢物池紊乱的时间动态显著减弱了生物钟相关1(CCA1)mRNA振荡的幅度,同时保持其固有周期。相比之下,这些波动延长了巨蛋白(GI)的周期并大大降低了其幅度。与其调节作用一致,ntrc植物中叶绿体氧化还原节律和TTFL驱动的核振荡器被严重破坏。通过NTRC表达可挽救这些损伤,但催化无活性的NTRC(C/S)突变体的表达则不能,这表明NTRC的氧化还原活性对于同步细胞内昼夜节律至关重要。作为回报,经典的核生物钟组件,CAB表达时间1(TOC1),通过控制NTRC表达来调节昼夜叶绿体氧化还原节律,叶绿体2-半胱氨酸过氧化物酶的氧化还原循环证明了这一点。这种相互调节表明叶绿体氧化还原节律与核振荡器之间存在紧密耦合。总体而言,我们的研究已确定NTRC为关键的昼夜调节因子,阐明了依赖代谢物的叶绿体氧化还原节律与核经典生物钟时间动态之间的复杂联系。