Kim Minjun, Ji Sooyeon, Kim Jiye, Min Kyeongseon, Jeong Hwihun, Youn Jonghyo, Kim Taechang, Jang Jinhee, Bilgic Berkin, Shin Hyeong-Geol, Lee Jongho
Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea.
Hum Brain Mapp. 2025 Feb 1;46(2):e70136. doi: 10.1002/hbm.70136.
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.g., multi-echo spin-echo) in addition to multi-echo GRE data for . To address these challenges, we develop a new deep learning network, χ-sepnet, and propose two deep learning-based susceptibility source separation pipelines, χ-sepnet- for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and χ-sepnet- for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality χ-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, χ-sepnet- achieves the best outcomes followed by χ-sepnet- , outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from χ-sepnet- and χ-sepnet- (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet- pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
磁化率源分离(χ 分离)是一种先进的定量磁化率成像(QSM)方法,能够分别估计大脑中顺磁性和抗磁性磁化率源分布。与 QSM 类似,它需要解决偶极子反演的不适定问题,会出现所谓的条纹伪影。此外,该方法利用可逆横向弛豫( )来补充频移信息以估计磁化率源浓度,除了用于 的多回波 GRE 数据外,还需要耗时的数据采集用于 (例如,多回波自旋回波)。为应对这些挑战,我们开发了一种新的深度学习网络 χ - sepnet,并提出了两种基于深度学习的磁化率源分离管道,χ - sepnet - 用于具有多回波 GRE 和多回波自旋回波(或快速自旋回波)的输入,以及 χ - sepnet - 仅用于具有多回波 GRE 的输入。该神经网络使用提供无条纹伪影标签的多个头部方向数据进行训练,生成高质量的 χ 分离图。对这些管道的评估包括对健康受试者的定性和定量评估,以及对多发性硬化症患者病变特征的目视检查。与基于传统正则化的重建方法相比,所提出管道的磁化率源分离图描绘出了具有显著减少伪影的详细脑结构。在定量分析中,χ - sepnet - 取得了最佳结果,其次是 χ - sepnet - ,优于传统方法。当将多发性硬化症患者的病变分为亚型时,在来自 χ - sepnet - 和 χ - sepnet - 的图中,大多数病变被识别为相同亚型(顺磁性磁化率:99.6%,抗磁性磁化率:98.4%;均出自 250 个病变)。仅需要多回波 GRE 数据的 χ - sepnet - 管道已显示出其在广泛临床和科学应用中的潜力,尽管有必要对各种疾病和病理状况进行进一步评估。